

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Coimbatore-35

DEPARTMENT OF BIOMEDICAL ENGINEERING

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS

UNIT II- Pressure, Displacement and Temperature II Year/ IV Sem

Dr. K. Manoharan,
ASP / BME / SNSCT

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS / Dr. K. Manoharan, ASP / BME / SNSCT

BIOMEDICAL TRANSDUCERS AND SENSORS

- ✓ Resistive Strain Gauges and Bridge circuit
- ✓ Piezoelectric Transducers
- ✓ Potentiometric Transducers
- ✓ Capacitive, Inductive
- ✓ LVDT Transducers Principle
- ✓ Equivalent Circuit & Linearity Issues
- ✓ Thermo Resistive Resistance Temperature Detectors (RTDS)
- ✓ Thermistor Thermo Electric Thermocouple
- ✓ PN Junction Diode

Definition

A piezoelectric transducer converts mechanical energy (pressure, force, or vibration) into electrical energy using the piezoelectric effect.

Piezoelectric Effect

Certain materials generate an electric charge when subjected to mechanical stress. This effect is reversible, meaning applying voltage can also cause deformation.

Working Principle

When pressure or force is applied to a piezoelectric crystal, it generates a proportional voltage.

The generated voltage can be measured and used for sensing applications.

Signal Processing

The output signal is often small and requires amplification and filtering.

Signal conditioning is needed for accurate measurement.

23BMT203 - BIOMEDICAL TRANSDUCERS AND SENSORS / Dr. K. Manoharan, ASP / BME / SNSCT

Types of Piezoelectric Transducers

Active: Generates electrical signals without an external power source (e.g., accelerometers).

Passive: Requires an external power source (e.g., ultrasonic sensors).

Applications in Sensing

Measures pressure, force, and acceleration in various fields.

Used in industrial monitoring, biomedical devices, and aerospace.

Applications in Actuation

Used in ultrasonic transducers, buzzers, and medical imaging (ultrasound machines). Employed in precision motion control systems.

Frequency Response

• Operates over a wide frequency range, making it ideal for dynamic force measurements.

Sensitivity and Accuracy

Highly sensitive to small forces.

Provides fast response times and accurate measurements.

Advantages

Compact and lightweight

High sensitivity to force and pressure changes

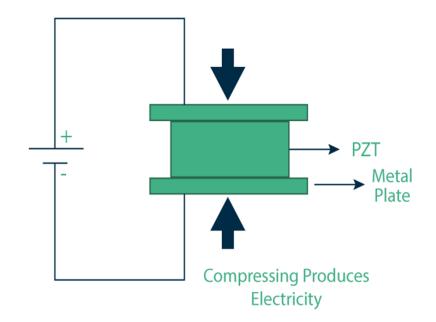
No external power required for sensing

Durable and reliable in harsh environments

Disadvantages

Cannot measure static forces effectively

Signal drift over time


Requires high-impedance circuitry for signal processing

Working of Piezoelectric Transducer

- ✓ A piezoelectric transducer operates based on the piezoelectric effect, where mechanical stress generates an electrical charge in certain materials.
- ✓ A piezoelectric material, such as quartz, is coated with a thin conductive layer (e.g., silver) to facilitate charge collection.
- ✓ When stress is applied, the material's internal particles shift, creating an electric charge, whose polarity depends on the direction of the applied force—either compressive or tensile stress

Applications:

Structural Health Monitoring

Detects vibrations and stress in bridges, aircraft, and industrial machinery.

Medical Applications

Used in ultrasound imaging, pacemakers, and hearing aids.

Consumer Electronics

Found in microphones, speakers, and touch sensors in smartphones.