
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade 
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

COURSE CODE & NAME : 23CST205 - Object Oriented Programming Using Java

II YEAR/ III SEMESTER

UNIT – II INTRODUCTION TO JAVA

Topic: BASICS OF JAVA PROGRAMMING-VARIABLES



Java Variables

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Vanitha.G/AP/CSE/SNSCT

22/17/2025

• Variables are containers for storing data values.

• In Java, there are different types of variables, for example:

• String - stores text, such as "Hello". String values are surrounded by double quotes

• int - stores integers (whole numbers), without decimals, such as 123 or -123

• float - stores floating point numbers, with decimals, such as 19.99 or -19.99

• char - stores single characters, such as 'a' or 'B'. Char values are surrounded by single 

quotes

• boolean - stores values with two states: true or false



Declaring (Creating) Variables

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Vanitha.G/AP/CSE/SNSCT

32/17/2025

• To create a variable, you must specify the type and assign it a value:

• Syntax

type variableName = value;

• Where type is one of Java's types (such as int or String), and

variableName is the name of the variable (such as x or name). The

equal sign is used to assign values to the variable.



Declaring (Creating) Variables

• Example

• Create a variable called name of type String and

assign it the value “Robin".

• Then we use println() to print the name variable:

public class Main {

public static void main(String[] args) {

String name = " Robin";

System.out.println(name);

}

}

• Output: Robin

2/17/2025
BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming Using 

Java/Vanitha.G/AP/CSE/SNSCT 4

• Example

• Create a variable called myNum of type int and assign 

it the value 35:

public class Main {

public static void main(String[] args) { 

int myNum = 35; 

System.out.println(myNum);

}

}

• Output: 35



TYPES OF VARIABLES

• Eg: public class A

• {

• static int m=100;//static variable

• void method()

• {

• int n=90;//local variable

• }

• public static void main(String args[])

• {

• int data=50;//instance variable

• }

• }//end of class

1)Local Variable

• A variable declared inside the body of the method is called local
variable. You can use this variable only within that method and
the other methods in the class aren't even aware that the
variable exists.

• A local variable cannot be defined with "static" keyword.

2) Instance Variable

• A variable declared inside the class but outside the body of the
method, is called an instance variable. It is not declared as static.

• It is called an instance variable because its value is instance-
specific and is not shared among instances.

3) Static variable

• A variable that is declared as static is called a static variable. It
cannot be local. You can create a single copy of the static variable
and share it among all the instances of the class. Memory
allocation for static variables happens only once when the class is
loaded in the memory

2/17/2025
BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object

Oriented Programming Using Java/Vanitha.G/AP/CSE/SNSCT
5

https://www.javatpoint.com/static-keyword-in-java


Final Variables

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Vanitha.G/AP/CSE/SNSCT

62/17/2025

• If you don't want others (or yourself) to overwrite existing values, use the final keyword (this will declare the variable as "final" or

"constant", which means unchangeable and read-only):

• Example:

public class Main {

public static void main(String[]args) { 

final int myNum = 25;

myNum = 30; // will generate an error 

System.out.println(myNum);

}

}

• Output:

Main.java:4: error: cannot assign a value to final variable myNum 

myNum = 30;

 ̂

1 error



Display Variables

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Devi.G/AP/CSE/SNSCT

72/17/2025

• The println() method is often used to display variables.

• To combine both text and a variable, use the + character:

• Example:

public class Main {

public static void main(String[] args) { 

String name = "John"; 

System.out.println("Hello " + name);

}

}

• Output: Hello John



Display Variables

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Vanitha.G/AP/CSE/SNSCT

82/17/2025

• You can also use the + character to add a variable to another variable:

• Example:

public class Main {

public static void main(String[] args) { 

String firstName = "John ";

String lastName = "David";

String fullName = firstName + lastName; 

System.out.println(fullName);

}

}

• Output: John David



Declare Many Variables

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Vanitha.G/AP/CSE/SNSCT

92/17/2025

• To declare more than one variable of the same type, you can use a comma-separated list

• Example

Instead of writing: 

int x = 5;

int y = 6; 

int z = 50;

System.out.println(x + y + z); 

You can simply write:

int x = 5, y = 6, z = 50; 

System.out.println(x + y + z);



One Value to Multiple Variables

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Vanitha.G/AP/CSE/SNSCT

102/17/2025

• You can also assign the same value to multiple variables in one line:

• Example

int x, y, z;

x = y = z = 50; 

System.out.println(x + y + z);



Java Identifiers

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Vanitha.G/AP/CSE/SNSCT

112/17/2025

• All Java variables must be identified with unique names.

• These unique names are called identifiers.

• Identifiers can be short names (like x and y) or more descriptive names (age, sum, totalVolume).

• Note: It is recommended to use descriptive names in order to create understandable and maintainable 

code

• Example

// Good

int minutesPerHour = 60;

// OK, but not so easy to understand what m actually is 

int m = 60;



Java Identifiers

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Vanitha.G/AP/CSE/SNSCT

122/17/2025

• The general rules for naming variables are:

• Names can contain letters, digits, underscores, and dollar signs

• Names must begin with a letter

• Names should start with a lowercase letter, and cannot contain whitespace

• Names can also begin with $ and _ (but we will not use it in this tutorial)

• Names are case-sensitive ("myVar" and "myvar" are different variables)

• Reserved words (like Java keywords, such as int or boolean) cannot be used as 

names



Real-Life Examples

BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Devi.G/AP/CSE/SNSCT

132/17/2025

• A program that stores different data about a college student

public class Main {

public static void main(String[] args) {

// Student data

String studentName = "John David";

int studentID = 15;

int studentAge = 23;

float studentFee = 75.25f;

char studentGrade = 'B';

// Print variables

System.out.println("Student name: " + studentName);

System.out.println("Student id: " + studentID);

System.out.println("Student age: " + studentAge); 

System.out.println("Student fee: " + studentFee); 

System.out.println("Student grade: " + studentGrade);

}

}

Output:

Student name: John David 
Student id: 15
Student age: 23
Student fee: 75.25 
Student grade: B



BASICS OF JAVA PROGRAMMING-VARIABLES/23CST205 - Object Oriented Programming
Using Java/Vanitha.G/AP/CSE/SNSCT

142/17/2025


