

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-I Vector calculus

Gradient and directional derivative

unit-1	malacks
Vectory calculus restary soft	1.11/12
Aralou anonther the San Da San Da San	Jato
Scalar quantities () 4 + Do 1 + Do 7	
a scalar quantity is that which has	
magnitude and it is not related to any	
Vector quantités (septe) (se) sit (ge) [1 (200)]	
A vector quantity is that which h	as both
magnitude and direction	e molack
Vector différéntial soperator - prose = p orono po	, Patilis,
The vector differential operator is	$\frac{\delta}{\delta y} + \frac{1}{\kappa} \frac{\delta}{\delta z}$
Note + (= + - + = =) + (= = + - + = =) + (= = + - + = =) + (= = + - + = =) + (= = + - + = = =) + (= = + - + = = =) + (= = + - + = = = = = = = = = = = = = = =	
* 7×7= 1×1= K×K=1	
* 12x1 = 12x2 = x2x1 = 0	
entagiont of a scalar boint truction	
of p (x, 4, 2) is a scalar point ju	naion and
it is continuously differentiable then it is	defined as
70= 1300 + 13 20 + 13 20 (3+ 3	
as grad (b) (by) \pa.	

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

UNIT-I Vector calculus

Gradient and directional derivative

PHOBLEMI

$$\nabla \phi = \vec{i} \frac{\partial \phi}{\partial x} + \vec{j} \frac{\partial \phi}{\partial y} + \vec{k} \frac{\partial \phi}{\partial z}$$

$$= \frac{1}{1000} \frac{\partial}{\partial x} (x^2 + y^2 + z^2) + \frac{1}{1000} \frac{\partial}{\partial y} (x^2 + y^2 + z^2) + \frac{1}{1000} \frac{\partial}{\partial z} (x^2 + y^2 + z^2)$$

PHOblem 2

$$\sqrt{\phi} = \sqrt{\frac{9}{9}} + \sqrt{\frac{9}{3}} + \sqrt{\frac{9}{9}} + \sqrt{\frac{9}{9}}$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT-I Vector calculus

Gradient and directional derivative

Pά d + Pά L + 96 1 -

Problem 2

Thind the directional downvalive of 4222+242 at the point (13-231) in the direction 21-j-2k

The directional devotivative is to \$70. and prosessing of

$$\nabla \varphi = 2\vec{i} + \vec{j} + 6\vec{k}$$

$$|\tilde{a}|^{\frac{2\pi}{2}} = \sqrt{\frac{1}{4} + 1 + \frac{1}{4}} \frac{\sqrt{2\pi} + (y^2 + y^2 + y^$$

$$|a'| = 3.$$