Section 3.1.5: Permutations and Combinations

When picking items from a set so that the order of the selection matters, we call this a **Permutation**.

When picking items from a set so that the order of the selection does not matter, we call this a **Combination**.

A club has an election for President, Vice-president and Secretary.

A club has an election for President, Vice-president and Secretary.

There are 5 candidates, A, B, C, D and E

A club has an election for President, Vice-president and Secretary.

- There are 5 candidates, A, B, C, D and E
- After ranking, the top candidate will be President, the second Vice-president and the third Secretary.

A club has an election for President, Vice-president and Secretary.

- ► There are 5 candidates, A, B, C, D and E
- After ranking, the top candidate will be President, the second Vice-president and the third Secretary.

How many different outcomes are there?

A club has an election for its executive board, which consists of 3 members.

There are 5 candidates, A, B, C, D and E

A club has an election for its executive board, which consists of 3 members.

- There are 5 candidates, A, B, C, D and E
- The top three candidates will be on the board

A club has an election for its executive board, which consists of 3 members.

- There are 5 candidates, A, B, C, D and E
- The top three candidates will be on the board

How many different possibilities are there for the board?

In both cases, 3 out of the 5 candidates will be picked.

In both cases, 3 out of the 5 candidates will be picked.

In Example (1) the order matters since it determines who gets which position.

In both cases, 3 out of the 5 candidates will be picked.

In Example (1) the order matters since it determines who gets which position. This is a **permutation** problem.

7

The number of different outcomes is denoted

₅ F

7

The number of different outcomes is denoted

 $_{5}P_{3}$

In general, if we want to select *r* items out of *n*, and the **order matters**, then the number of ways of doing that is denoted by

 $_{1}P_{r}$

In Example (2), the order does not matter since the board members are equal. This is a **combination** problem.

9

The number of different boards is denoted by

₅ C

9

The number of different boards is denoted by

 $_5C_3$

In general, if we want to select *r* items out of *n*, and the **order does not matter**, then the number of ways of doing that is denoted by

 $_{n}C_{r}$

To write a **permutation** we use square brackets like [A,B,C].

To write a **permutation** we use square brackets like [A,B,C]. This is different from [A,C,B] since the order matters.

$$[A, B, C] \neq [A, C, B]$$

To write a **combination**, we use braces like $\{A,B,C\}$.

To write a **combination**, we use braces like {A,B,C}.Now {A,B,C} and {A,C,B} are equal since the order doesn't matter.

$${A, B, C} = {A, C, B}$$

Picking the officers can be broken into three steps:

Picking the officers can be broken into three steps:

1. Pick a President

Picking the officers can be broken into three steps:

- 1. Pick a President
- 2. Pick a Vice-president

Picking the officers can be broken into three steps:

- 1. Pick a President
- 2. Pick a Vice-president
- 3. Pick a Secretary

Remarks:

The selection of president will affect the choices for vice-president, since you can't be both.

Remarks:

- The selection of president will affect the choices for vice-president, since you can't be both.
- However, the number of choices for vice-president is independent of the selection of president.

Number of choices for secretary is independent of the two previous steps.

- Number of choices for secretary is independent of the two previous steps.
- So we can apply the product principle to get the total number of outcomes.

President		Vice-pres		Secretary	,	Slates
5	×	4	X	3	=	60

We see that

$$_5P_3=5\times4\times3$$

We go down by 1 since at each step we have 1 fewer item to pick from.

In general, if we want to pick r items out of n, and the **order matters**, the product principle tells us that

$$_{n}P_{r} = \underbrace{n \times (n-1) \cdots \times (n-r+1)}_{r \text{ factors}}$$

Special case: When we want to pick n items out of n and the order matters.

Special case: When we want to pick n items out of n and the order matters. This is the number of ways n items can be ordered.

$$_{n}P_{n} = n \times (n-1) \times (n-2) \cdots \times 2 \times 1$$

We denote this number by n!, and call it **n** factorial.

We denote this number by n!, and call it **n** factorial.

This is the number of permutations of n objects.

How many ways can we order the three letters A, B, and C?

How many ways can we order the three letters A, B, and C?

Solution

In terms of factorials, it's

$$3! = 3 \times 2 \times 1 = 6$$

How many ways can we order the three letters A, B, and C?

Solution

In terms of factorials, it's

$$3! = 3 \times 2 \times 1 = 6$$

We can list all six: [A,B,C], [A,C,B], [B,A,C], [B,C,A], [C,A,B], [C,B,A]. Using factorials we rewrite the formula for ${}_{n}P_{r}$ as:

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Example

A club has an election for its executive board, consisting of 2 members (different than earlier example).

Example

A club has an election for its executive board, consisting of 2 members (different than earlier example). There are 5 candidates, A, B, C, D and E.

Example

A club has an election for its executive board, consisting of 2 members (different than earlier example). There are 5 candidates, A, B, C, D and E. The top two will be on the board.

Example

A club has an election for its executive board, consisting of 2 members (different than earlier example). There are 5 candidates, A, B, C, D and E. The top two will be on the board. How many outcomes are there?

We need to choose 2 board members out of 5 candidates. So the number of outcomes is

 $_5C_2$

We need to choose 2 board members out of 5 candidates. So the number of outcomes is

 $_5C_2$

But how do we compute that number?

If we pretend for now that order matters we would get

$$_{5}P_{2}=5\times 4=20$$

If we pretend for now that order matters we would get

$$_5P_2 = 5 \times 4 = 20$$

But outcomes like [A, B] and [B, A] (which are different permutations) represent the same combination, namely $\{A, B\}$.

So, in the above count of 20, each combination gets double counted. So, divide by 2, to get

$$_{5}C_{2}=\frac{5\times4}{2}=10$$

In general, when r items are picked they can be arranged in

$$_{r}P_{r}=r!$$

different orders.

In general, when r items are picked they can be arranged in

$$_{r}P_{r}=r!$$

different orders. So, when we ignore the order, each combination gets counted r! times.

Therefore the number of combinations of r items out of n is obtained by dividing the number of permutations by r!:

Therefore the number of combinations of r items out of n is obtained by dividing the number of permutations by r!:

$$_{n}C_{r}=\frac{_{n}P_{r}}{r!}=\frac{n!}{(n-r)!\times r!}$$

Therefore the number of combinations of r items out of n is obtained by dividing the number of permutations by r!:

$$_{n}C_{r}=\frac{_{n}P_{r}}{r!}=\frac{n!}{(n-r)!\times r!}$$

or

$$_{n}C_{r}=rac{n\cdot (n-1)\cdots (n-r+1)}{1\cdot 2\cdot 3\cdots r}$$

 $_{6}P_{3}$

$$_6P_3=6\cdot 5\cdot 4$$

$$_6P_3 = 6 \cdot 5 \cdot 4 = 120$$

Example

$$_6P_3 = 6 \cdot 5 \cdot 4 = 120$$

₆ C₃

$$_{6}P_{3}=6\cdot 5\cdot 4=120$$

$$_{6}C_{3}=\frac{_{6}r_{3}}{3!}$$

$$_{6}P_{3}=6\cdot 5\cdot 4=120$$

$$_{6}C_{3} = \frac{_{6}P_{3}}{3!} = \frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3}$$

$$_{6}P_{3}=6\cdot 5\cdot 4=120$$

$$_{6}C_{3} = \frac{_{6}P_{3}}{3!} = \frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} = 20$$

What if r = 0 or r = n? We need to know what to plug in for 0!.

What if r = 0 or r = n? We need to know what to plug in for 0!. Turns out 0! = 1.

$$n! = n \times (n-1) \cdots \times 2 \times 1$$

What if r = 0 or r = n? We need to know what to plug in for 0!. Turns out 0! = 1.

$$n! = n \times (n-1) \cdots \times 2 \times 1$$

 $0! = 1$

Example

 $_{6}P_{0} =$

$$_{6}P_{0}=\frac{6!}{(6-0)!}=1$$

$$_{6}P_{0}=\frac{6!}{(6-0)!}=1$$

$$_{6}C_{6} =$$

$$_{6}P_{0} = \frac{6!}{(6-0)!} = 1$$
 $_{6}C_{6} = \frac{6!}{6! \cdot 9!}$

$$_{6}P_{0} = \frac{6!}{(6-0)!} = 1$$
 $_{6}C_{6} = \frac{6!}{6! \cdot 0!} = 1$

Now we have the tools to tackle the "3" version:

Example (2)

A club has an election for its executive board, consisting of 3 members.

Example (2)

A club has an election for its executive board, consisting of 3 members.

There are 5 candidates, A, B, C, D and E

Example (2)

A club has an election for its executive board, consisting of 3 members.

- There are 5 candidates, A, B, C, D and E
- Top three candidates will be on the board

Example (2)

A club has an election for its executive board, consisting of 3 members.

- There are 5 candidates, A, B, C, D and E
- Top three candidates will be on the board

How many outcomes are there?

Solution

If 3 board members are chosen from a pool of 5 candidates, this can be done in

$$_{5}C_{3} = \frac{5!}{2! \ 3!} = \frac{120}{2 \cdot 6} = 10$$

different ways.

An Ice Cream Parlor has 7 flavors of ice cream, in three different containers.

An Ice Cream Parlor has 7 flavors of ice cream, in three different containers.

a) How many different two-scoop orders are possible?

An Ice Cream Parlor has 7 flavors of ice cream, in three different containers.

- a) How many different two-scoop orders are possible?
- b) How many true double scoops are possible?

An Ice Cream Parlor has 7 flavors of ice cream, in three different containers.

- a) How many different two-scoop orders are possible?
- b) How many true double scoops are possible?

A true double is a two-scoop with 2 different flavors.

First consider the true doubles.

First consider the true doubles. We assume that the order doesn't matter. There are

$$_{7}C_{2} = \frac{7!}{2!5!} = \frac{5040}{2 \cdot 120} = 21$$

ways to choose the two flavors.

pick the container (3 choices)

- pick the container (3 choices)
- pick the flavors (21 choices)

- pick the container (3 choices)
- pick the flavors (21 choices)
 By the product principle there are

$$3 \times 21 = 63$$

different true doubles.

For the first part of the problem (number of two-scoop orders, period), we can break it down into two disjoint cases.

- we have a true double
- both scoops have the same flavor

For the first part of the problem (number of two-scoop orders, period), we can break it down into two disjoint cases.

- we have a true double (63 orders)
- both scoops have the same flavor

The first case is already covered (63 orders).

For the first part of the problem (number of two-scoop orders, period), we can break it down into two disjoint cases.

- we have a true double (63 orders)
- both scoops have the same flavor (21 orders)

The first case is already covered (63 orders).

For the second case, we need to pick

- ▶ a container (3 choices)
- ▶ a single flavor (7 choices)

For the second case, we need to pick

- a container (3 choices)
- ▶ a single flavor (7 choices) so there are $3 \times 7 = 21$ two-scoop of a single flavor.

Combining the two cases with the sum principle, there are a total of

$$63 + 21 = 84$$

two-scoop ice cream orders.

Next time: Counting poker hands.