

## SNS COLLEGE OF TECHNOLOGY



(An Autonomous Institution)
Coimbatore-641035.

UNIT-II ORDINARY DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients

Type: 
$$\Pi$$

R(x) =  $\cos ax (ox) \sin ax$ .

\* Replace  $D^2 = -(a)^2$ 
 $p = Integrale$ .

Example: 1.

Solve  $(D^2 + H)y = \cos ax$ 

The A.E is  $m^2 + H = 0$ 
 $m^2 = -H$ 
 $m^2 = L(1) + M$ 
 $m^2 = L(2) +$ 



## SNS COLLEGE OF TECHNOLOGY



(An Autonomous Institution)
Coimbatore-641035.

**UNIT-II ORDINARY DIFFERENTIAL EQUATIONS** 

Higher order linear differential equations with constant coefficients

Tuple: 
$$D$$

R(x)= $x^{n}$ 

R(x



## SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.



UNIT-II ORDINARY DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - D \left( \chi^{2} + a \chi + 4 \right) + D^{2} \left( \chi^{2} - a \chi + 4 \right) \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + 4 - a \chi - a + a \right]$$

$$= \frac{1}{D} \left[ \chi^{2} + a \chi + a$$