

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Joint distribution, Marginal, Conditional distribution

U197-JI Two Demensional Random Valable + Jornt Dectorbutcon * Marga Dal Dactof but con * conditional Dectorbution * covariance preterbutton

+ correlation DectoPout Bon

* Regression DPStop but an * Functions of Random Valabre.

e exe

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Jointdistribution, Marginal, Conditional distribution

ProductiI. Johnt Publishipty Nass Function
I. $P(x_i, y_j) \ge 0$ II. $P(x_i, y_j) \ge 0$ III. $P(x_i, y_j) \ge 0$ III. $P(x_i, y_j) \ge 0$ III. $P(x_i, y_j) \ge 1$ III. $P(x_i, y_j) \ge 1$ III. $P(x_i, y_j) = 1$ III. $P(x_i, y_j) = 1$ III. $P(x_i, y_j) = 1$ III. $P(x) = \sum_{j=1}^{n} P(x_j, y_j)$ Nowganal declapsulation function of Y: $P(y) = \sum_{j=1}^{n} P(x_j, y_j)$ $P(y) = \sum_{j=1}^{n} P(x_j, y_j)$

4]. Cumulative pretilibution:

 $F(x, y) = P(x \le x, y \le y)$

J. Johnt Richardshifty Density Function i). $f(x, y) \ge 0$ ii). $\int_{-\infty}^{\infty} f(x, y) dy dx = 1$ $-\infty - \infty$ J. To Find Constant $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = 1$ $-\infty - \infty$ J. Mauginal distribution Function of X: $f(x) = \int_{-\infty}^{\infty} f(x, y) dy$ Mauginal distribution Function of Y: $f(y) = \int_{-\infty}^{\infty} f(x, y) dx$ $-\infty$ J. Cumulative Distribution : $f(x, y) = \int_{-\infty}^{\infty} f(x, y) dy dx$ $f(x, y) = \int_{-\infty}^{\infty} f(x, y) dy dx$

0

2

Cept9pubus

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Jointdistribution, Marginal, Conditional distribution

Discuete
El. To obeck x & y are Prodependent:

$$P(i, j) = P(x=i) \cdot P(y=j)$$

El. Conditional Dischalbertion
 $P(x=x_i|y=y_j) = \frac{P(x=x_i, y=y_j)}{P(y=y_j)}$
 $P(y=y_j/x=x_i) = \frac{P(x=x_i, y=y_j)}{P(x=x_i)}$

5]. To check x & y are Prodependent $F(x, y) = F(x) \cdot F(y)$ b]. (onolythermal Distribution $P' + f(x/y) = \frac{F(x, y)}{F(y)}$ $F(y/x) = \frac{F(x, y)}{F(y)}$ $F(y/x) = \frac{F(x, y)}{F(x)}$ 7]. Joint cumulative Function is given by the find PDF then to Find PDF $F(x, y) = \frac{\partial^2}{\partial x \partial y} F(x, y)$

Continuous

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Jointdistribution, Marginal, Conditional distribution

Following table for bevariate distribution From the TI OF (X, Y). Find i). $P(x \le 1)$ ii). $P(y \le 3)$ iii). $P(x \le 1, y \le 3)$ iv). $P(x \le 1/y \le 3)$ v). $P(y \le 3/x \le 1)$ vi). Mauggna distribution function of x & y. vii). Conditional distribution of x given y=2 Viii). EStemate X& y are endependent ix). $P(x+y \leq 4)$ Soln. 6 P(X) 1 5 2 3 4 *× 2/32 2/32 3/32 8/32 1/32 0 0 0 1/8 1/0 10 1/8 1 1/8 1/16 1/16 16 8 2/64 1/61 0 1/64 1/32 1/32 a 64 \$3 11 13 3 6 16 P(Y) 1 64 64 32 64 32 32 ī) $P(x \leq 1)$

$$P(x \le 1) = P(x=0) + P(x=1)$$

= $\frac{8}{38} + \frac{10}{16}$
= $\frac{28}{38} = \frac{7}{8}$

i) $P(y \le 3)$ $P(y \le 3) = P(y=1) + P(y=2) + P(y=3)$ $= \frac{3}{32} + \frac{3}{32} + \frac{11}{64}$ $= \frac{33}{64}$

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Jointdistribution, Marginal, Conditional distribution

$$\begin{aligned} x = 0, 1 \\ y = 1, 3, 3 \\ P(x \le 1, y \le 3) = p(0, D + P(0, 3) + P(0, 3) + P(1, D) + P(1, 3) + P(1, 3) \\ = 0 + D + \frac{1}{38} + \frac{1}{16} + \frac{1}{16} + \frac{1}{8} \\ = \frac{1 + 8 + 4 + 4}{38} \\ = \frac{9}{38} \\ y = \frac{9}{38} \\ y = \frac{1 + 8 + 4 + 4}{38} \\ = \frac{9}{38} \\ y = \frac{P(0, D + P(0, 3) + P(0, 3) + P(1, 1) + P(1, 3) \\ = \frac{P(0, D + P(0, 3) + P(0, 3) + P(1, 1) + P(1, 3) + P(1, 3$$

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Jointdistribution, Marginal, Conditional distribution

$$= \frac{9/32}{98/32}$$

$$= \frac{9}{28}$$

$$= \frac{9}{28}$$
With row growth declar buttom function of x
$$x = 0 \quad 1 = 2$$
P(x) $8/32$ $10/16$ $8/64$
Produgrowth declar buttom function of y:
y = 1 = 2 = 3 = 4 = 5 = 6
P(y) $3/32$ $3/32$ $1/64$ $13/64$ $6/32$ $16/64$
With Condribuoal declar buttom functions of x on y=2.
P(x) $9/32$ $3/32$ $1/64$ $13/64$ $6/32$ $16/64$
With Condribuoal declar buttom functions of x on y=2.
P(x) $9/32$ $9/32$ $1/64$ $13/64$ $13/64$ $13/22$ $16/64$
With Condribuoal declar buttom functions of x on y=2.
P(x) $9/2$ $9/2$ $9/2$ $9/2$ $10/2$ 10

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Jointdistribution, Marginal, Conditional distribution

- ix). $P(x+y \le 4)$ $P(x+y \le 4) = P(0, 0 + P(0, 2) + P(0, 3) + P(0, 4) + P(1, 1)$ + P(1, 2) + P(1, 3) + P(2, 0) + P(2, 2) $= 0 + 0 + \frac{1}{32} + \frac{2}{32} + \frac{1}{16} + \frac{1}{16} + \frac{1}{8} + \frac{1}{32} + \frac{1}{32}$ $= \frac{1+2+2+2+2+4+1+1}{32}$ $= \frac{13}{32}$
- J. IF the fornt PDF of (x, y) is green by P(x, y) = K(2x + 3y), x = 0, 1, 2; y = 1, 2, 3. Find all the marginal probability distribution. Also find the Prob. distribution of (x + y) and P(x + y > 3).Solo.

Given $P(x, y) = K(a_x + 3y)$

XX	0	T	2	P(Y)
1	3K	5K	TK	15 K
2	6K	8K	IOK	24 K
3	9K	IJК	13K	33 K
P(x)	18K	924 K	30K	Tak
	total P.	eobab919ty	=1	
		Tak	= 1	
		tr.	- 1	

Ta

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Jointdistribution, Marginal, Conditional distribution

P(x+y>3) = P(x+y=4) + P(x+y=5) $= \frac{21}{79} + \frac{13}{79}$ = 34 72 S The two demensional landom valeable (x, y)

bas joint peobability mass function

 $F(x, y) = \frac{x + 2y}{27}$, x = 0, 1, 2; y = 0, 1, 2. Find the conditional distribution of y for x=x.

Also find conditional dictribution of y given x =1. Soln.

Criven $F(x, y) = \frac{x+2y}{2}$ P(x) XXY 2 0 t 0. 2/27 4/27 6/27 1/27 3/27 5/27 9/27 0 1 2/27 4/27 6/27 12/27 2 3/27 9/27 15/27 1

P(Y)

i).
$$P(Y|x=x) = \emptyset$$

When $x=0$,
 $P(y=0|x=0) = \frac{P(x=0, y=0)}{P(x=0)} = \frac{0}{6/27} = 0$
 $P(y=1|x=0) = \frac{P(x=0, y=1)}{P(x=0)} = \frac{2/27}{6/27} = \frac{9}{6}$
 $P(y=2|x=0) = \frac{P(x=0, y=2)}{P(x=0)} = \frac{4/97}{6/27} = 4$

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS Jointdistribution, Marginal, Conditional distribution

where $x=1$, $P(y=0 x=1) = \frac{P(x=1, y=0)}{P(x=1)} = \frac{Y_{27}}{9/_{27}}$	$=\frac{1}{9}$
$P(y=1/x=1) = \frac{P(x=1, y=1)}{P(x=1)} = \frac{3/27}{9/27}$	= <u>3</u> 9
$P(y=9/x=1) = \frac{P(x=1, y=2)}{P(x=1)} = \frac{5/_{27}}{9/_{27}}$	$=\frac{5}{9}$
when $x = a_{x}$	
	$=\frac{\alpha}{1\alpha}$
$P[y=1/x=2) = \frac{P(x=2, y=1)}{P(x=2)} = \frac{4/27}{12/27}$	$=$ $=$ $\frac{4}{12}$
$P(Y=2 X=2) = \frac{P(X=2, Y=2)}{P(X=2)} = \frac{b/27}{12/27}$	$=\frac{6}{12}$
ii). $P(y x=1)$ $P(y=0 x=1) = \frac{1}{9}$	
$P(y=1 x=1) = \frac{3}{9}$	
$P(y=2/x=1) = \frac{5}{9}$	