SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Comp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Comp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

VQAR-II

UNIT-1

QUANTITATIVE ABILITY III

Time, Speed and Distance:

Speed: The rate at which a body or an object travels to cover a certain distance is called **speed** of that body.

Time: The duration in hours, minutes or seconds spent to cover a certain distance is called the **time**.

Distance: The length of the path travelled by any object or a person between two places is known as **distance**.

Relation between Speed, Time and Distance

Speed is the distance covered by an object in unit time. It is calculated by dividing the distance travelled by the time taken.

$$Speed = \frac{Distance}{Time} \qquad Time = \frac{Distance}{Speed} \qquad Distance = Speed \times Time$$

Note: Units of Speed, time and distance should be in the same metric system.

Example: 1 A car covers 125 km in 5 h, then find the speed of the car.

Solution: We know that, Speed =
$$\frac{Distance}{Time}$$

Required speed =
$$\frac{125}{5}$$
 = 25 km/h.

Example: 2 A train covers a distance of 200 km with a speed of 10 km/h. What time is taken by the train to cover this distance?

Solution: Speed = 10 km/h and distance = 200 km

$$Time = \frac{Distance}{Speed} = \frac{200}{10} = 20$$

Required time = 20 h.

Example: 3 A bike crosses a bridge with a speed of 108 km/h. What will be the length of the bridge, if the bike takes 8 h to cross the bridge?

Solution: Here, length of the bridge = Distance travelled by bike in 8 h

$$=$$
 Speed \times Time

Given that, Speed = 108 km/h

Time = 8 h then length of the bridge = $108 \times 8 = 864$ km.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Description of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Description of the COIMBATORE-641 035, TAMIL NADU

Basic Formulae Related to Speed, Time and Distance

Formula: 12

Conversion of units a km/h =
$$\frac{a \times 1000 \text{ m}}{3600 \text{ s}} = \frac{5a}{18} \text{ m/s}$$

$$am/s = \frac{a \times 1/1000 \ km}{1/3600h} = \frac{18a}{5} \ km/h$$

Example: 4 Convert 72 km/h into m/s.

Solution: We know that, $a \, km/h = \left(a \times \frac{5}{18}\right) m/s$

72 km/h =
$$\left(72 \times \frac{5}{18}\right)$$
 m/s = 4 × 5 = 20 m/s.

Example: 5 Convert 25 m/s into *k*m/h.

Solution: We know that, $a m/s = \left(a \times \frac{18}{5}\right) km/h$

$$25 \ m/s = \left(25 \times \frac{18}{5}\right) m/s = 5 \times 18 = 90 \ km/h.$$

Formula: 2

If speed is kept constant, then the distance covered by an object is proportional to time.

ie., Distance ∞ Time (Speed constant) or $\frac{D_1}{T_1} = \frac{D_2}{T_2}$

Example: 6 A person covers 20 $\frac{2}{5}$ km in 3 h. What distance will he cover in 5 h?

Solution: Here, speed is kept constant. Therefore, according to the formula,

$$\frac{D_1}{T_1} = \frac{D_2}{T_2}$$

Given that
$$D_1 = 20 \frac{2}{5} = \frac{102}{5} \ km$$

$$T_1 = 3 h, T_2 = 5 h \text{ and } D_2 = ?$$

$$\frac{102/5}{3} = \frac{D_2}{5}$$

$$D_2 = \frac{102 \times 5}{5 \times 3} = 34 \ km$$

Distance covered by the object in 5 h = 34 km.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Comp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Comp; B. Tech.IT) COIMBATORE-641 035, TAMIL NADU

Formula: 3

If time is kept constant, then the distance covered by an object is proportional to speed.

ie., Distance
$$\infty$$
 Speed (time constant) or $\frac{D_1}{S_1} = \frac{D_2}{S_2}$

Example: 7 A person covers a distance of 12 km, while walking at a speed of $4 \, km/h$. How much distance he would cover in same time, if he walks at a speed of $6 \, km/h$?

Solution: Given that
$$D_1 = 12 \text{ km}$$
, $S_1 = 4 \text{ km/h}$, $S_2 = 6 \text{ km/h}$, $D_2 = ?$

Since, the time is kept constant. Therefore, according to the formula, $\frac{D_1}{S_1} = \frac{D_2}{S_2}$.

$$\Rightarrow \frac{12}{4} = \frac{D_2}{6} \Rightarrow D_2 = 18 \text{ km}$$

Therefore, the person will cover 18 km.

Formula: 4

If distance is kept constant, then the speed of a body is inversely proportional to time.

ie, Speed
$$\infty \frac{1}{\text{Time}}$$
 (distance constant) (or) $S_1 T_1 = S_2 T_2 = S_3 T_3 = \dots$

Note: If the ratio of speeds of two objects is x: y, then to cover same distance, the ratio of time taken will be y: x.

Example: 8 A person covers a certain distance with a speed of 18 km/h in 8 min. If he wants to cover the same distance in 6 min, what should be his speed?

Solution: We know that, Speed =
$$\frac{\text{Distance}}{\text{Time}} \Rightarrow 18 = \frac{\text{Distance} \times 60}{8}$$
 [8 min = $\frac{8}{60}h$]

Distance =
$$\frac{18\times8}{60} = \frac{12}{5}$$
 km

Speed to cover
$$\frac{12}{5}$$
 km in 6 min = $\frac{\text{Distance}}{\text{Time}} = \frac{\frac{12}{5}}{\frac{1}{10}}$ [6 min = $\frac{1}{60}$ h]

$$=\frac{12}{5} \times 10 = 12 \times 2 = 24 \text{ km/h}.$$

.