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Recap

Process Creation(fork())

Process Termination(exit(),abort())



Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, including 

sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing



Communications Models 

(a) Message passing.  (b) shared memory. 



Cooperating Processes

 Independent process cannot affect or be affected by the execution of 

another process

 Cooperating process can affect or be affected by the execution of 

another process

 Advantages of process cooperation

 Information sharing 

 Computation speed-up

 Modularity

 Convenience



Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces 

information that is consumed by a consumer process

 unbounded-buffer places no practical limit on the size of 

the buffer

 bounded-buffer assumes that there is a fixed buffer size



Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements



Bounded-Buffer – Producer

item next_produced; 

while (true) { 

/* produce an item in next produced */ 

while (((in + 1) % BUFFER_SIZE) == out) 

; /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

} 



Bounded Buffer – Consumer

item next_consumed; 

while (true) {

while (in == out) 

; /* do nothing */

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */ 

} 



Interprocess Communication –

Shared Memory

 An area of memory shared among the processes that wish to 

communicate

 The communication is under the control of the users processes not the 

operating system.

 Major issues is to provide mechanism that will allow the user 

processes to synchronize their actions when they access shared 

memory. 



Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize 
their actions

 Message system – processes communicate with each other 
without resorting to shared variables

 IPC facility provides two operations:

 send(message)

 receive(message)

 The message size is either fixed or variable



Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:

 Establish a communication link between them

 Exchange messages via send/receive

 Implementation issues:

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of 

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or 

variable?

 Is a link unidirectional or bi-directional?



Message Passing (Cont.)

 Implementation of communication link

 Physical:

Shared memory

Hardware bus

Network

 Logical:

 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering



Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating 

processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional



Indirect Communication

 Messages are directed and received from mailboxes (also referred 

to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional



Indirect Communication

 Operations

 create a new mailbox (port)

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A



Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two 

processes

 Allow only one process at a time to execute a receive 

operation

 Allow the system to select arbitrarily the receiver.  

Sender is notified who the receiver was.



Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

Blocking send -- the sender is blocked until the message is 

received

Blocking receive -- the receiver is  blocked until a message 

is available

Non-blocking is considered asynchronous

Non-blocking send -- the sender sends the message and 

continue

Non-blocking receive -- the receiver receives:

A valid message,  or 

Null message

Different combinations possible

If both send and receive are blocking, we have a rendezvous



Synchronization (Cont.)

 Producer-consumer becomes trivial

message next_produced; 

while (true) {

/* produce an item in next produced */ 

send(next_produced); 

} 

message next_consumed;

while (true) {

receive(next_consumed);

/* consume the item in next consumed */

}



Buffering

 Queue of messages attached to the link.

 implemented in one of three ways

1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length 

Sender never waits



Communications in Client-Server 

Systems

 Sockets

 Remote Procedure Calls

 Pipes

 Remote Method Invocation (Java)



Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at start of message 

packet to differentiate network services on a host

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard services

 Special IP address 127.0.0.1 (loopback) to refer to system on which process is 

running



Socket Communication



Sockets in Java

 Three types of sockets

 Connection-oriented 

(TCP)

 Connectionless (UDP)

 MulticastSocket

class– data can be sent 

to multiple recipients

 Consider this “Date” server:



Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls 

between processes on networked systems

 Again uses ports for service differentiation

 Stubs – client-side proxy for the actual procedure on the 

server

 The client-side stub locates the server and marshalls the 

parameters

 The server-side stub receives this message, unpacks the 

marshalled parameters, and performs the procedure on the 

server

 On Windows, stub code compile from specification written in 

Microsoft Interface Definition Language (MIDL)



Remote Procedure Calls (Cont.)

 Data representation handled via External Data 

Representation (XDL) format to account for different 

architectures

 Big-endian and little-endian

 Remote communication has more failure scenarios than local

 Messages can be delivered exactly once rather than at 

most once

 OS typically provides a rendezvous (or matchmaker) service 

to connect client and server



Execution of RPC



Pipes

 Acts as a conduit allowing two processes to communicate

 Issues:

 Is communication unidirectional or bidirectional?

 In the case of two-way communication, is it half or full-duplex?

 Must there exist a relationship (i.e., parent-child) between the 

communicating processes?

 Can the pipes be used over a network?

 Ordinary pipes – cannot be accessed  from outside the process that created it. 

Typically, a parent process creates a pipe and uses it to communicate with a 

child process that it created. 

 Named pipes – can be accessed without a parent-child relationship.



Ordinary Pipes

Ordinary Pipes allow communication in standard producer-consumer style

Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)

Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes

Windows calls these anonymous pipes

See Unix and Windows code samples in textbook



Named Pipes

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the 

communicating processes

 Several processes can use the named pipe for communication

 Provided on both UNIX and Windows systems
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