
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

COURSE NAME : 23CST201 OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT-I OVERVIEW AND PROCESS MANAGEMENT

Topic: Inter Process Communication

Dr.B.Vinodhini
Associate Professor

Department of Computer Science and Engineering

SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Inter Process Communication

2/25/2025

Recap

Process Creation(fork())

Process Termination(exit(),abort())

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, including

sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

Communications Models

(a) Message passing. (b) shared memory.

Cooperating Processes

 Independent process cannot affect or be affected by the execution of

another process

 Cooperating process can affect or be affected by the execution of

another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces

information that is consumed by a consumer process

 unbounded-buffer places no practical limit on the size of

the buffer

 bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

Bounded Buffer – Consumer

item next_consumed;

while (true) {

while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Interprocess Communication –

Shared Memory

 An area of memory shared among the processes that wish to

communicate

 The communication is under the control of the users processes not the

operating system.

 Major issues is to provide mechanism that will allow the user

processes to synchronize their actions when they access shared

memory.

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize
their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:

 send(message)

 receive(message)

 The message size is either fixed or variable

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:

 Establish a communication link between them

 Exchange messages via send/receive

 Implementation issues:

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or

variable?

 Is a link unidirectional or bi-directional?

Message Passing (Cont.)

 Implementation of communication link

 Physical:

Shared memory

Hardware bus

Network

 Logical:

 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating

processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication

 Messages are directed and received from mailboxes (also referred

to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

Indirect Communication

 Operations

 create a new mailbox (port)

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two

processes

 Allow only one process at a time to execute a receive

operation

 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

Blocking send -- the sender is blocked until the message is

received

Blocking receive -- the receiver is blocked until a message

is available

Non-blocking is considered asynchronous

Non-blocking send -- the sender sends the message and

continue

Non-blocking receive -- the receiver receives:

A valid message, or

Null message

Different combinations possible

If both send and receive are blocking, we have a rendezvous

Synchronization (Cont.)

 Producer-consumer becomes trivial

message next_produced;

while (true) {

/* produce an item in next produced */

send(next_produced);

}

message next_consumed;

while (true) {

receive(next_consumed);

/* consume the item in next consumed */

}

Buffering

 Queue of messages attached to the link.

 implemented in one of three ways

1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

Communications in Client-Server

Systems

 Sockets

 Remote Procedure Calls

 Pipes

 Remote Method Invocation (Java)

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at start of message

packet to differentiate network services on a host

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard services

 Special IP address 127.0.0.1 (loopback) to refer to system on which process is

running

Socket Communication

Sockets in Java

 Three types of sockets

 Connection-oriented

(TCP)

 Connectionless (UDP)

 MulticastSocket

class– data can be sent

to multiple recipients

 Consider this “Date” server:

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems

 Again uses ports for service differentiation

 Stubs – client-side proxy for the actual procedure on the

server

 The client-side stub locates the server and marshalls the

parameters

 The server-side stub receives this message, unpacks the

marshalled parameters, and performs the procedure on the

server

 On Windows, stub code compile from specification written in

Microsoft Interface Definition Language (MIDL)

Remote Procedure Calls (Cont.)

 Data representation handled via External Data

Representation (XDL) format to account for different

architectures

 Big-endian and little-endian

 Remote communication has more failure scenarios than local

 Messages can be delivered exactly once rather than at

most once

 OS typically provides a rendezvous (or matchmaker) service

to connect client and server

Execution of RPC

Pipes

 Acts as a conduit allowing two processes to communicate

 Issues:

 Is communication unidirectional or bidirectional?

 In the case of two-way communication, is it half or full-duplex?

 Must there exist a relationship (i.e., parent-child) between the

communicating processes?

 Can the pipes be used over a network?

 Ordinary pipes – cannot be accessed from outside the process that created it.

Typically, a parent process creates a pipe and uses it to communicate with a

child process that it created.

 Named pipes – can be accessed without a parent-child relationship.

Ordinary Pipes

Ordinary Pipes allow communication in standard producer-consumer style

Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)

Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes

Windows calls these anonymous pipes

See Unix and Windows code samples in textbook

Named Pipes

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the

communicating processes

 Several processes can use the named pipe for communication

 Provided on both UNIX and Windows systems

References

6/24/2024 Tree ADT/23ITT201_DS /VINODHINI.B/CSE/SNSCT

1. Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Tenth

Edition, Wiley India Pvt Ltd, 2018

2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition,

Pearson Education, 2010.

3. William Stallings, “Operating Systems – Internals and Design

Principles”, 7th Edition, Prentice Hall, 2011

2/25/2025

