
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

COURSE NAME : 23CST201 OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT-I OVERVIEW AND PROCESS MANAGEMENT

Topic: Inter Process Communication

Dr.B.Vinodhini
Associate Professor

Department of Computer Science and Engineering

SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Inter Process Communication

2/25/2025

Recap

Process Creation(fork())

Process Termination(exit(),abort())

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, including

sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

Communications Models

(a) Message passing. (b) shared memory.

Cooperating Processes

 Independent process cannot affect or be affected by the execution of

another process

 Cooperating process can affect or be affected by the execution of

another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces

information that is consumed by a consumer process

 unbounded-buffer places no practical limit on the size of

the buffer

 bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

Bounded Buffer – Consumer

item next_consumed;

while (true) {

while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Interprocess Communication –

Shared Memory

 An area of memory shared among the processes that wish to

communicate

 The communication is under the control of the users processes not the

operating system.

 Major issues is to provide mechanism that will allow the user

processes to synchronize their actions when they access shared

memory.

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize
their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:

 send(message)

 receive(message)

 The message size is either fixed or variable

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:

 Establish a communication link between them

 Exchange messages via send/receive

 Implementation issues:

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or

variable?

 Is a link unidirectional or bi-directional?

Message Passing (Cont.)

 Implementation of communication link

 Physical:

Shared memory

Hardware bus

Network

 Logical:

 Direct or indirect

 Synchronous or asynchronous

 Automatic or explicit buffering

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating

processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication

 Messages are directed and received from mailboxes (also referred

to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

Indirect Communication

 Operations

 create a new mailbox (port)

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two

processes

 Allow only one process at a time to execute a receive

operation

 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

Blocking send -- the sender is blocked until the message is

received

Blocking receive -- the receiver is blocked until a message

is available

Non-blocking is considered asynchronous

Non-blocking send -- the sender sends the message and

continue

Non-blocking receive -- the receiver receives:

A valid message, or

Null message

Different combinations possible

If both send and receive are blocking, we have a rendezvous

Synchronization (Cont.)

 Producer-consumer becomes trivial

message next_produced;

while (true) {

/* produce an item in next produced */

send(next_produced);

}

message next_consumed;

while (true) {

receive(next_consumed);

/* consume the item in next consumed */

}

Buffering

 Queue of messages attached to the link.

 implemented in one of three ways

1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

Communications in Client-Server

Systems

 Sockets

 Remote Procedure Calls

 Pipes

 Remote Method Invocation (Java)

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at start of message

packet to differentiate network services on a host

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard services

 Special IP address 127.0.0.1 (loopback) to refer to system on which process is

running

Socket Communication

Sockets in Java

 Three types of sockets

 Connection-oriented

(TCP)

 Connectionless (UDP)

 MulticastSocket

class– data can be sent

to multiple recipients

 Consider this “Date” server:

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls

between processes on networked systems

 Again uses ports for service differentiation

 Stubs – client-side proxy for the actual procedure on the

server

 The client-side stub locates the server and marshalls the

parameters

 The server-side stub receives this message, unpacks the

marshalled parameters, and performs the procedure on the

server

 On Windows, stub code compile from specification written in

Microsoft Interface Definition Language (MIDL)

Remote Procedure Calls (Cont.)

 Data representation handled via External Data

Representation (XDL) format to account for different

architectures

 Big-endian and little-endian

 Remote communication has more failure scenarios than local

 Messages can be delivered exactly once rather than at

most once

 OS typically provides a rendezvous (or matchmaker) service

to connect client and server

Execution of RPC

Pipes

 Acts as a conduit allowing two processes to communicate

 Issues:

 Is communication unidirectional or bidirectional?

 In the case of two-way communication, is it half or full-duplex?

 Must there exist a relationship (i.e., parent-child) between the

communicating processes?

 Can the pipes be used over a network?

 Ordinary pipes – cannot be accessed from outside the process that created it.

Typically, a parent process creates a pipe and uses it to communicate with a

child process that it created.

 Named pipes – can be accessed without a parent-child relationship.

Ordinary Pipes

Ordinary Pipes allow communication in standard producer-consumer style

Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)

Ordinary pipes are therefore unidirectional

Require parent-child relationship between communicating processes

Windows calls these anonymous pipes

See Unix and Windows code samples in textbook

Named Pipes

 Named Pipes are more powerful than ordinary pipes

 Communication is bidirectional

 No parent-child relationship is necessary between the

communicating processes

 Several processes can use the named pipe for communication

 Provided on both UNIX and Windows systems

References

6/24/2024 Tree ADT/23ITT201_DS /VINODHINI.B/CSE/SNSCT

1. Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Tenth

Edition, Wiley India Pvt Ltd, 2018

2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition,

Pearson Education, 2010.

3. William Stallings, “Operating Systems – Internals and Design

Principles”, 7th Edition, Prentice Hall, 2011

2/25/2025

