

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Conformal mapping : que alle fri ande (ii) 1) Find the image of the following Acgion under the translation w = 1/z(i) half plane x>c when c>o (ii) the infinite strip 1/2 y < 1/2 y (iii) the infinite strip 0 < y < 1/2 $\underbrace{\underline{\mathcal{S}}_{0}|\mathbf{n}}_{i} : \widehat{\mathbf{n}}_{i} = \underbrace{\underline{\mathcal{M}}}_{i} = \underbrace{\underline{\mathcal{M}}}_{i}$ $2(+iy) = \frac{1}{u+iv} = \frac{1}{u+iv} \cdot \frac{u-iv}{|u-iv|^2} = \frac{1}{u+iv}$ $\mathcal{H} + iy' = \frac{u - iv}{u^2 + v^2} = \frac{(u - v^2)}{u^2 + v^2}$ $x = \frac{u}{u^2 + v^2}$, $y = \frac{-v}{u^2 + v^2}$ (11) (i) Haif plane x > c when c>0 x= c $\int_{-\infty}^{\infty} \sqrt{\frac{1}{2}} \frac{u}{u^2 + v^2} = c$ $u = c (u^{2} + v^{2})$ $u = u^{2} + v^{2}$ $u = u^{2} + v^{2}$ $(1 - (u^2 - u) + v^2 = 0.$ $\begin{pmatrix} u^{2} - \frac{u}{c} + \frac{1}{ac} \end{pmatrix}^{2} + v^{2} - \left(\frac{1}{ac}\right)^{2} = 0 \qquad a = u \\ 2ab = \frac{u}{c} \\ \left(u - \frac{1}{ac}\right)^{2} + v^{2} - \left(\frac{1}{ac}\right)^{2} \qquad b = \frac{u}{2ac} \\ which is a circle with centre <math>\left(\frac{1}{ac}, 0\right) \notin b = \frac{u}{2yc} \\ radius \ 1/2c \qquad b = 1 \\ \end{pmatrix}$ radius 1/2c.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPATMENT OF MATHEMATICS

(ii) the infinite strip it 292 (1) Find the second of the formation of the formation of the first the formation of the for the translation us = 1/2 $\frac{-v}{u^2 + v^2} = \frac{1}{4} \quad 0 < 5 \text{ using } 0 < \frac{-v}{u^2 + v^2} = \frac{1}{4} \frac{1}{2} \frac{1}{2}$ $-v = \frac{1}{4} (u^2 + v^2) > v > \frac{1}{7} \quad q_{in} t > \frac{1}{2} \quad q_{in} t$ $-4v = u^{2} + v^{2}$ $u^{2} + v^{2} + 4v = 0$ $u^{2} + (v+1)^{2} - 1 = 0$ $u^{2} + (v+1)^{2} - 1 = 0$ $u^{2} + (v+1)^{2} - 1 = 0$ $u^{2} + (v+2)^{2} - 4 = 0$ $u^{2} + (v+1)^{2} = 1$ $U^{2} + (V+2)^{2} = \frac{4}{1-12}$ which is a even of coicle vicentre: (0, -1)(iii) $0 < y < \frac{1}{2} \frac{y}{1 + \frac{y}{2}} = \frac{y}{y} + \frac{y}{2} \frac{y}{2}$ y = 0 $-2v = u^2 + v^2$ V = 0which is a straight line $\begin{pmatrix} v + y \\ v + y \end{pmatrix} = \frac{1}{2} \frac{2}{1}$ $u^{2} + (v + 1)^{2} = \frac{1}{2} \frac{2}{1}$ $u^{2} + (v + 1)^{2} = \frac{1}{2}$ $u^{2} + (v + 1)^{2} =$ · centre : (0, -1) $\sigma = \left(\frac{1}{25}\right) \stackrel{2}{\longrightarrow} V + \left(\frac{1}{25}\left(\frac{\text{madius}}{25}\right) \stackrel{2}{\longrightarrow} V\right)$ $\left(\frac{u-\frac{1}{2\sqrt{c}}}{2\sqrt{c}}\right)^2 + \sqrt{\frac{1}{2\sqrt{c}}} - \left(\frac{1}{2\sqrt{c}}\right)^2$ which is a circle with centre