

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech. IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF AEROSPACE ENGINEERING

Faculty Name	:	Dr.A.Arun Negemiya, ASP/ Aero	Academic Year	:	2024-2025 (Even)
Year & Branch	:	III AEROSPACE	Semester	:	VI
Course	:	19ASB304 - Computational Fluid Dynamics for Aerospace Application			

UNIT III – FINITE ELEMENT TECHNIQUES

Comparison of FEM with Finite Volume and Finite Difference Methods

Here's a consolidated comparison, emphasizing their core differences and applications:

Key Distinctions:

• Formulation:

- FDM (Finite Difference Method):
 - Relies on approximating derivatives directly using Taylor series expansions.
 - Works with the differential form of the governing equations.
- FVM (Finite Volume Method):
 - Focuses on the integral form of conservation laws.
 - Ensures that quantities like mass, momentum, and energy are conserved within each control volume.
- **FEM (Finite Element Method):**
 - Based on variational formulations (weak forms) of the governing equations.
 - Approximates solutions using shape functions within elements.
- Grid/Mesh:
 - **FDM:**
 - Typically uses structured grids (e.g., Cartesian).
 - Can be challenging to apply to complex geometries.

• **FVM:**

- Can handle both structured and unstructured grids.
- Highly adaptable to complex geometries.
- **FEM:**
 - Also works with both structured and unstructured meshes.
 - Excels in handling complex geometries.

• Conservation:

• **FDM:**

- Conservation is not inherently guaranteed.
- **FVM:**
 - Strongly conservative, making it ideal for fluid flow problems.
- **FEM:**
 - Conservation properties vary depending on the specific formulation.
- Applications:
 - **FDM:**
 - Simpler problems on regular geometries (e.g., basic heat transfer).
 - **FVM:**
 - Computational Fluid Dynamics (CFD), heat transfer, and other conservation-focused problems.
 - **FEM:**
 - Structural analysis, solid mechanics, heat transfer, electromagnetics, and some CFD applications.

In simpler terms:

- Imagine dividing a pizza.
 - FDM: You're focused on the differences in toppings between tiny squares on the pizza.
 - FVM: You're making sure each slice (volume) has the correct amount of each topping.
 - FEM: You're fitting flexible shapes (elements) onto the pizza to approximate its overall form.

Key Takeaways:

• FVM is dominant in CFD due to its strong conservation properties.

- FEM is highly versatile for problems involving complex geometries.
- FDM is simple but limited to simpler cases.

Applications of Each Method

Practical Applications of FEM

All kinds of structural analysis, heat transfer, chemical engineering, electromagnetics (including electrostatics, magnetostatics, low-frequency electromagnetics, and frequency-domain high-frequency electromagnetic waves), multi-physics, and CFD.

Use Cases for FDM

Weather calculations, astrophysics, seismology, physical realism in computer graphics, and special effects.

FVM in Real-World Scenarios

CFD, heat transfer, and chemical engineering.