PART-B

Unit II, Two Dimensional Random Variables

1. From the following distribution of (X,Y) find. (i) $P(X \le 1)$ (ii) $P(Y \le 3)$ (iii) $P(X \le 1, Y \le 3)$ (iv) $P\left(X \le \frac{1}{Y} \le 3\right)$ (v) $P\left(Y \le \frac{3}{X} \le 1\right)$ (vi) $P(X + Y \le 4)$						
4). X	1	2	3	4	5	6
0	0	0	$\frac{1}{32}$	$\frac{2}{32}$	$\frac{2}{32}$	$\frac{3}{32}$
1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
2	$\frac{1}{32}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{64}$	0	$\frac{2}{64}$

- 2. The joint probability function (X,Y) is given by P(x, y) = k(2x + 3y) x = 0,1,2; y = 1,2,3
 - (i) Find the marginal distributions.
 - (ii) Find the probability distributions of (X+Y)
 - (iii) Find all conditional probability distributions.
- 3. The joint p.d.f of the random variable (X,Y) is given by

$$f(x,y) = \begin{cases} \frac{x(1+3y^2)}{4} & 0 < x < 2, \ 0 < y < 1\\ 0 & otherwise \end{cases}$$

Find

(i) Marginal density function s of X and Y

(iii)
$$P\left(\frac{1}{4} < X < \frac{\frac{1}{2}}{Y} = \frac{1}{3}\right)$$

4. The joint p.d.f of the two dimensional random variable (X,Y) is given by $f(x,y) = \begin{cases} \frac{8xy}{9} : 1 \le x \le y \le 2\\ 0 : otherwise \end{cases}$ Find Marginal densities of X and Y (i) (ii) The conditional density functions f(x)y) and f(y/x). 5. If the joint p.d.f of a two dimensional random variable (X,Y) is given by f(x, y) = $\begin{cases} x^2 + \frac{xy}{3}: & 0 < x < 1; 0 < y < 2 \\ 0: & otherwise \end{cases}$ Find (i) P(X > 1/2) (ii) P(Y > 1) (iii) P(Y < X) $P\left(\begin{array}{c} Y < \frac{1}{2} \\ X < \frac{1}{2} \end{array}\right) \quad (v) \quad P(X + Y \ge 1)$ (iii) (vi) find the conditional density functions. (vii) Check whether the conditional density functions are valid. 6. The joint p.d.f of the random variable (X,Y) is given by $f(x, y) = kxye^{-(x^2+y^2)} x > 0, y > 0$ Find k (ii) Prove that X and Y are independent. (i) $f_{XY}(x,y) =$ 7. Given $\begin{cases} cx(x-y) & , 0 < x < 2, -x < y < x \\ 0 & otherwise \end{cases}$ (i) Evaluate c (ii) Find $f_X(x)$ (iii) $f_{\frac{Y}{x}}(y/x)$ $f_v(v)$. (iv)

8. Two random variables X and Y have the following joint probability density functions

$$f(x,y) = \begin{cases} 2-x-y: 0 \le x \le 1, 0 \le y \le 1\\ 0 & : otherwise \end{cases}$$

- (i) Find the marginal density functions of X and Y
- (ii) Conditional density function
- (iii) Var X and Var Y
- (iv) Correlation coefficient between X and Y.
- 9. Given the joint p.d.f of X and Y is

$$f(x,y) = \begin{cases} 8xy: 0 < x < y < 1\\ 0 &: otherwise \end{cases}$$

Find the marginal and conditional p.d.f's X and Y.Are X and Y independent?

10. Let (X,Y) be the two dimensional random variable described by the joint p.d.f

$$f(x, y) = \begin{cases} 8xy: 0 \le x \le 1, 0 \le y \le x \\ 0 &: otherwise \end{cases}$$

Find the Cov(X,Y).

- 11. The joint p.d.f of the random variable (X,Y) is $f(x,y) = 3(x+y): 0 \le x \le 1, 0 \le y \le 1, x+y \le 1$. Find Cov(X,Y).
- 12. If X and Y are uncorrelated random variables with variances 16 and 9, find the correlation co-efficient between x+y and x-y.
- 13. Marks obtained by 10 students in Mathematics(x) and statistics(y) are given below

x:	60	34	40	50	45	40	22	43	42	64
y:	75	32	33	40	45	33	12	30	34	51

Find the two regression lines. Also find y when x=55.

14. In a correlation analysis the equations of the two regression lines are 3x + 12y = 9; and 3y + 9x = 46.

Find (i) The value of the correlation coefficient (ii) Mean value of X and Y.

15. Find the correlation coefficient and the equation of the regression lines for the following values of X and Y.

X	1	2	3	4	5
Y	2	5	3	8	7

16. Find the most likely price in City A corresponding to the price of Rs.70 at City B from the following:

I	J	\mathcal{O}
	City B	City A
Average Price	65	67
S.D. of Price	2.5	3.5

Correlation coefficient is 0.8.

17. The joint p.d.f of the random variable (X,Y) is given as

$$f(x,y) = \begin{cases} e^{-(x+y)} & ; x > 0, y > 0\\ 0 & ; otherwise \end{cases}$$

Find the distribution of $\frac{1}{2}(X - Y)$.

- 18. The independent random variables X and Y follow exponential distribution with parameter $\lambda = 1$. Find the p.d.f of U = X Y.
- 19. Let X and Y are normally distributed independent random variables with mean 0 and variance σ^2 . Find the p.d.f's of $R = \sqrt{x^2 + y^2}$ and $\theta = tan^{-1}\left(\frac{y}{x}\right)$.
- 20. The joint p.d.f of a two dimensional random variable (X, Y) is given by $f(x, y) = x + y, 0 \le x, y \le 1$. Find the p.d.f of U=XY.
- 21. If X and Y are independent random variables, with p.d.f $f(x) = e^{-x}$, $x \ge 0$: $f(y) = e^{-y}$, $y \ge 0$. Show that $U = \frac{x}{x+y}$ and V = X + Y are independent.
