
SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE- 641 035

 Department of Computer Science and Engineering

19CSE314 – Open Source Software

Containerization Technologies: Docker

Docker is one of the most popular and widely used containerization technologies. It enables

developers to package applications and their dependencies into isolated containers, which can

be deployed and run consistently across different environments. Docker provides a platform

that allows developers to build, ship, and run applications in a lightweight, portable, and

secure manner.

Overview of Docker

Docker is an open-source platform that automates the deployment, scaling, and management

of applications within containers. Containers are lightweight, portable, and ensure that an

application runs the same way across different environments, whether it's a developer's local

machine, a testing server, or production in the cloud.

Docker simplifies the software development lifecycle by allowing developers to package an

application with all its dependencies (e.g., libraries, system tools, and configurations) into a

container. This eliminates the "it works on my machine" problem, where an application

behaves differently in different environments due to differences in configurations or

dependencies.

Core Components of Docker

1. Docker Engine: The Docker Engine is the core component responsible for running

containers. It consists of:

o Docker Daemon (dockerd): The background service that manages Docker

containers.

o Docker CLI: The command-line interface used to interact with Docker,

enabling users to build, manage, and run containers.

2. Docker Images: An image is a lightweight, stand-alone, and executable package that

includes everything needed to run a piece of software: the code, runtime, libraries,

environment variables, and configuration files. Docker images are read-only

templates used to create containers.

o Base Image: A minimal image that serves as the starting point for creating

custom images (e.g., an Ubuntu base image).

o Custom Image: A Docker image created based on a base image but

customized with additional dependencies or configurations.

3. Docker Containers: A container is a runtime instance of a Docker image. It is a

lightweight, isolated environment in which an application runs. Containers are

portable, meaning they can be run on any machine that has Docker installed,

regardless of the underlying system.

4. Dockerfile: A Dockerfile is a text file that contains instructions on how to build a

Docker image. It defines the base image, any software packages to install,

environment variables, and other configurations required for the application.

5. Docker Hub: Docker Hub is a cloud-based registry service where users can find and

share Docker images. It hosts both official images (like Ubuntu, Nginx, MySQL, etc.)

and user-contributed images. Docker Hub allows you to pull (download) images to

your local machine or push (upload) images to share with others.

6. Docker Compose: Docker Compose is a tool for defining and running multi-

container Docker applications. It allows you to configure your application's services,

networks, and volumes using a docker-compose.yml file. This makes it easier to

manage complex applications that require multiple containers (e.g., a web server,

database, and caching service).

7. Docker Volumes: Docker volumes provide persistent storage for data used by

containers. Unlike the file system inside a container (which is ephemeral), volumes

persist even after the container is stopped or removed. Volumes are useful for storing

databases, configuration files, or any other data that needs to be preserved.

How Docker Works

1. Docker Images: You start by creating a Docker image that contains everything your

application needs. This is done using a Dockerfile, which specifies the instructions for

building the image.

2. Building an Image: To build an image, the Docker engine reads the Dockerfile,

downloads the necessary base images, installs dependencies, and adds your

application's files. This results in a self-contained image that can be deployed

anywhere.

3. Running Containers: After the image is built, you can run it as a container. A

container is an instance of an image running in an isolated environment, ensuring that

the application behaves the same way on any system with Docker installed.

4. Sharing Images: Docker Hub (or a private registry) allows you to share images with

other developers or deploy them to production environments. Other developers can

pull the image from Docker Hub and run it locally, ensuring consistency across

development, testing, and production.

Benefits of Docker

1. Portability: Docker containers ensure that an application runs consistently regardless

of the environment. This means developers can run the same containers on their local

machines, staging environments, and production servers, reducing the "it works on

my machine" issue.

2. Isolation: Containers provide process and filesystem isolation. This means that each

container runs independently, without affecting other containers or the host system.

This allows you to run multiple applications or microservices on the same machine

without conflicts.

3. Efficiency and Speed: Docker containers are lightweight compared to traditional

virtual machines (VMs). Unlike VMs, which include an entire operating system,

containers share the host OS kernel, reducing overhead and allowing for faster startup

times and more efficient resource utilization.

4. Consistency: Docker ensures that applications run the same way in development,

testing, and production environments. By using the same Docker images across all

stages of development, Docker eliminates discrepancies between different

environments.

5. Scalability: Docker is highly scalable. Containers can be quickly started, stopped, and

replicated, which is particularly useful in microservices architectures where individual

services need to be scaled independently.

6. Version Control: Docker images are versioned, allowing teams to roll back to

previous versions of an application if needed. This makes it easy to manage and

maintain applications over time.

7. Easy Integration with CI/CD: Docker works well with Continuous Integration and

Continuous Deployment (CI/CD) pipelines. Developers can automate the testing,

building, and deployment of applications in containers, ensuring faster and more

reliable delivery of software.

Docker Use Cases

1. Microservices Architecture: Docker is widely used in microservices-based

architectures, where each microservice is packaged in its own container. Containers

can be deployed, scaled, and updated independently, making it easier to manage

complex systems.

2. Development and Testing: Docker allows developers to create isolated development

and testing environments that replicate production systems. This ensures consistency

and avoids the "works on my machine" problem when moving between different

development stages.

3. Continuous Integration/Continuous Deployment (CI/CD): Docker is commonly

integrated into CI/CD pipelines to automate the building, testing, and deployment of

applications. Docker ensures that the environment remains consistent across all

stages, from development to production.

4. Cloud Deployment: Docker is used in cloud environments like AWS, Google Cloud,

and Microsoft Azure to deploy and manage applications. Docker makes it easy to

deploy applications in containers that are portable across different cloud platforms.

5. DevOps and Automation: Docker enables the automation of many tasks related to

application deployment, monitoring, and scaling. This is a key component in DevOps

practices, where developers and operations teams collaborate more efficiently.

Docker vs. Virtual Machines (VMs)

Feature Docker Containers Virtual Machines (VMs)

Resource

Efficiency
Containers share the host OS kernel,

making them lightweight and

VMs are more resource-intensive

because they include a full OS, which

Feature Docker Containers Virtual Machines (VMs)

efficient. requires more memory and CPU.

Start-up Time
Containers start quickly (typically in

seconds).

VMs take longer to start (can take

minutes).

Isolation

Containers provide process and file

system isolation but share the same

OS kernel.

VMs provide full isolation with

separate operating systems.

Performance

Containers are more lightweight and

offer better performance due to less

overhead.

VMs experience performance

overhead due to virtualization and the

need for an entire OS.

Portability

Containers can run anywhere with

Docker installed, ensuring

consistency across environments.

VMs are less portable and often tied to

specific virtualization platforms (e.g.,

VMware, Hyper-V).

Use Case
Ideal for microservices, CI/CD, and

lightweight applications.

Ideal for running multiple full-fledged

OS environments with complete

isolation.

	SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) COIMBATORE- 641 035
	Department of Computer Science and Engineering
	19CSE314 – Open Source Software
	Containerization Technologies: Docker
	Overview of Docker
	Core Components of Docker
	How Docker Works
	Benefits of Docker
	Docker Use Cases
	Docker vs. Virtual Machines (VMs)

