
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 23CST202 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II PROCESS SCHEDULING AND SYNCHRONIZATION

Dr.V.Savitha

Associate Professor

Department of Computer Science and Engineering

Topic: Process Synchronization, The critical-section problem, Synchronization hardware

Need of Synchronization

 Processes can execute concurrently

 May be interrupted at any time, partially completing execution

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 2

 Illustration of the problem:
Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having an
integer counter that keeps track of the number of full buffers. Initially,
counter is set to 0. It is incremented by the producer after it produces a
new buffer and is decremented by the consumer after it consumes a
buffer.

Producer & Consumer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

Producer

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 3

}

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

Consumer

Race Condition

• counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

• counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 4

counter = register2

• Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

Critical Section Problem
• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

– Process may be changing common variables, updating table, writing file, etc

– When one process in critical section, no other may be in its critical section

• Critical section problem is to design protocol to solve this

• Each process must ask permission to enter critical section in entry section, may
follow critical section with exit section, then remainder section

• General structure of process Pi

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 5

• General structure of process Pi

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no
other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next cannot
be postponed indefinitely

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 6

be postponed indefinitely
3. Bounded Waiting - A bound must exist on the number of times that

other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n processes

Algorithm 1 for Process Pi

do {

while (turn == j);

critical section

turn = j;

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 7

turn = j;

remainder section

} while (true);

Algorithm 2 -Peterson’s Solution

• Good algorithmic description of solving the problem
• Two process solution

• Assume that the load and store machine-language instructions are
atomic; that is, cannot be interrupted

• The two processes share two variables:
– int turn;

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 8

– Boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical
section

• The flag array is used to indicate if a process is ready to enter the
critical section. flag[i] = true implies that process Pi is ready!

Algorithm 2 -Peterson’s Solution

do {

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 9

• Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Synchronization Hardware

• Many systems provide hardware support for implementing the critical
section code.

• All solutions below based on idea of locking
– Protecting critical regions via locks

• Uniprocessors – could disable interrupts
– Currently running code would execute without preemption
– Generally too inefficient on multiprocessor systems

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 10

– Generally too inefficient on multiprocessor systems
• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions
• Atomic = non-interruptible

– Either test memory word and set value
– Or swap contents of two memory words

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Test_and_set Instruction

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 11

Definition boolean test_and_set (boolean *target)

{
boolean rv = *target;
*target = TRUE;
return rv:

}

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to “TRUE”.

Solution using test_and_set()

 Shared Boolean variable lock, initialized to FALSE
 Solution:

do {
while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 12

lock = false;

/* remainder section */

} while (true);

Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

• Semaphore S – integer variable
• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()
• Originally called P() and V()

• Definition of the wait() operation

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 13

• Definition of the wait() operation
wait(S) {

while (S <= 0)
; // busy wait

S--;
}

• Definition of the signal() operation
signal(S) {

S++;
}

Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0 and 1

– Same as a mutex lock

• Can solve various synchronization problems

• Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 14

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

• Can implement a counting semaphore S as a binary semaphore

Semaphore Implementation

• Must guarantee that no two processes can execute the wait() and signal() on
the same semaphore at the same time

• Thus, the implementation becomes the critical section problem where the wait
and signal code are placed in the critical section

– Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 15

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical sections and therefore
this is not a good solution

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition,
Wiley India Pvt Ltd, 2009.)
T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson
Education, 2010

REFERENCES:

REFERENCES

3/6/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.V.Savitha 16

REFERENCES:
R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System
Concepts”, 9th Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th
Edition, Prentice Hall, 2011

