
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 23CST202 – OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II PROCESS SCHEDULING AND SYNCHRONIZATION

Dr.V.Savitha

Associate Professor

Department of Computer Science and Engineering

Topic: Deadlock prevention and Avoidance

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock state:

 Deadlock prevention

 Deadlock avoidance

 Allow the system to enter a deadlock state and then recover

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 2

 Allow the system to enter a deadlock state and then recover

 Ignore the problem and pretend that deadlocks never occur in the

system; used by most operating systems, including UNIX

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources (e.g., read-only files); must hold for non-
sharable resources

 Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold any
other resources

 Require process to request and be allocated all its resources before it begins execution, or allow
process to request resources only when the process has none allocated to it.

 Low resource utilization; starvation possible

Restrain the ways request can be made

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 3

 No Preemption

 If a process that is holding some resources requests another resource that cannot be immediately
allocated to it, then all resources currently being held are released

 Preempted resources are added to the list of resources for which the process is waiting

 Process will be restarted only when it can regain its old resources, as well as the new ones that it
is requesting

 Circular Wait – impose a total ordering of all resource types, and require that each process requests
resources in an increasing order of enumeration

Deadlock Avoidance

 Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need

 The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular-wait condition

Requires that the system has some additional a priori information available

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 4

allocation state to ensure that there can never be a circular-wait condition

 Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes

Safe State

 When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state

 System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the
processes in the systems such that for each Pi, the resources that Pi can still
request can be satisfied by currently available resources + resources held by
all the Pj, with j < I

 That is:

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 5

 That is:

 If Pi resource needs are not immediately available, then Pi can wait until all
Pj have finished

 When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate

 When Pi terminates, Pi +1 can obtain its needed resources, and so on

Safe, Unsafe, Deadlock State

Avoidance Algorithms

 Single instance of a resource type

 Use a resource-allocation graph

 Multiple instances of a resource type

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 6

 Multiple instances of a resource type

 Use the banker’s algorithm

Resource-Allocation Graph Scheme

 Claim edge Pi Rj indicated that process Pj may request resource Rj;
represented by a dashed line

 Claim edge converts to request edge when a process requests a resource

 Request edge converted to an assignment edge when the resource is
allocated to the process

 Resources must be claimed a priori in the system

Unsafe State Safe State

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 7

Unsafe State Safe State

Banker’s Algorithm

 Multiple instances

 Each process must a priori claim maximum use

 When a process requests a resource it may have to wait

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 8

 When a process gets all its resources it must return them in a finite
amount of time

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k instances of
resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k
instances of resource type Rj

Let n = number of processes, and m = number of resources types.

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 9

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k
instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of
Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi Work

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 10

(b) Needi Work

If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Example of Banker’s Algorithm

 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 11

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Example (Cont.)

 The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P 6 0 0

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 12

P2 6 0 0

P3 0 1 1

P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 13

Resource-Request Algorithm
for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1. If Requesti Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 14

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe the resources are allocated to Pi

 If unsafe Pi must wait, and the old resource-allocation state
is restored

TEXT BOOKS:

T1 Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth Edition,
Wiley India Pvt Ltd, 2009.)
T2. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition, Pearson
Education, 2010

REFERENCES:

REFERENCES

3/6/2025 SNSCT/CSE/Operating Systems/Unit-
II/Dr.V.Savitha 15

REFERENCES:
R1 Gary Nutt, “Operating Systems”, Third Edition, Pearson Education, 2004.

R2 Harvey M. Deitel, “Operating Systems”, Third Edition, Pearson Education, 2004.

R3 Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, “Operating System
Concepts”, 9th Edition, John Wiley and Sons Inc., 2012.

R4. William Stallings, “Operating Systems – Internals and Design Principles”, 7th
Edition, Prentice Hall, 2011

