
SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE- 641 035

 Department of Computer Science and Engineering

19CSE314 – Open Source Software

Basic TCL Commands

ChatGPT said:

TCL (Tool Command Language) is a powerful, easy-to-learn scripting language that is

widely used for network simulation in tools like NS2 (Network Simulator 2). TCL is used to

describe network topologies, set parameters, configure network devices, and control the flow

of simulations. Here are some basic TCL commands and concepts to help you get started

with scripting in TCL, particularly in the context of NS2.

1. Basic TCL Syntax

TCL is known for its simplicity. Here are some basic syntax rules to follow:

 Commands in TCL are executed one per line.

 A command consists of a keyword followed by arguments (if any).

 Variables are prefixed with the $ symbol to access their values, and {} are used to

group arguments in commands.

2. Variables in TCL

 To declare a variable:

set var_name value

 To access the value of a variable:

set var_name

Example:

set a 10

puts "Value of a is $a"

3. Control Structures in TCL

TCL provides common control structures like if conditions, loops, and procedures.

If-Else

if {condition} {

 # code if condition is true

} else {

 # code if condition is false

}

Example:

set a 5

if {$a == 5} {

 puts "a is 5"

} else {

 puts "a is not 5"

}

For Loop

for {set i 0} {$i < 10} {incr i} {

 puts "i = $i"

}

While Loop

set i 0

while {$i < 10} {

 puts "i = $i"

 incr i

}

4. Procedures in TCL

A procedure in TCL is defined using the proc command. This allows you to create reusable

blocks of code.

proc procedure_name {arg1 arg2} {

 # Procedure body

 return $result

}

Example:

proc greet {name} {

 puts "Hello, $name!"

}

greet "Alice"

5. Common TCL Commands in NS2

In the context of NS2, TCL is used to configure network simulation. Here are some common

commands for NS2 simulations:

Creating Nodes

To create a node in a simulation:

set node [new Node]

You can also create multiple nodes by:

set node1 [$ns node]

set node2 [$ns node]

Creating Links Between Nodes

To create a link between two nodes:

$ns duplex-link $node1 $node2 1Mb 10ms

This creates a duplex link between node1 and node2 with a bandwidth of 1Mbps and a delay

of 10ms.

Setting Routing

To set routing protocols for nodes (e.g., DSR, AODV):

$ns node-config -routing "DSR"

Simulating Traffic (Creating a TCP/UDP connection)

To create a TCP connection:

set tcp [new Agent/TCP]

$ns attach-agent $node1 $tcp

To create a UDP connection:

set udp [new Agent/UDP]

$ns attach-agent $node1 $udp

Creating a Node Configuration

You can configure nodes in the simulation:

$ns node-config -addressType hierarchical -defaultMacType "mac" \

 -channelType "Channel/WirelessChannel" -propType "Propagator/TwoRayGround" \

 -phyType "Phy/WirelessPhy" -topoInstance $topo -agentTrace ON -routerTrace ON

Creating a Link with Specific Parameters

You can specify the link’s bandwidth, delay, and queue type:

$ns duplex-link $node1 $node2 10Mb 50ms DropTail

Scheduling Events in NS2

In NS2, you can schedule events for later execution using the $ns at command:

$ns at 5.0 "puts \"Hello, simulation at time 5.0\""

This command will output the message at time 5.0.

6. Running the Simulation

Once you've created your nodes, links, and traffic generators, you need to run the

simulation. This is done using the $ns run command, which starts the simulation:

$ns run

7. Trace Files

NS2 supports trace files, which allow you to log simulation data (like packet transmissions

and receptions) for later analysis.

 Enable tracing:

$ns trace-all "tracefile.tr"

 Enable specific trace types:

$ns trace-queue "queuefile.tr"

$ns trace-collision "collisionfile.tr"

 Close the trace file:

$ns flush-trace

8. Example: Basic Network Simulation Script

Here's a basic NS2 TCL simulation script that creates two nodes, links them, and sends a

TCP packet from one to the other.

Create the simulator object

set ns [new Simulator]

Create two nodes

set node1 [$ns node]

set node2 [$ns node]

Create a link between the nodes with 1 Mbps bandwidth and 10 ms delay

$ns duplex-link $node1 $node2 1Mb 10ms

Create a TCP connection between the nodes

set tcp [new Agent/TCP]

$ns attach-agent $node1 $tcp

set sink [new Agent/TCPSink]

$ns attach-agent $node2 $sink

Create a connection between the two agents (node1 to node2)

$ns connect $tcp $sink

Start the traffic after 1 second

$ns at 1.0 "$tcp send 1000" ;# Send 1000 bytes after 1 second

Run the simulation

$ns run

TCL is a simple and powerful language used in NS2 to define and control network

simulations. The key concepts you should be familiar with are:

 Variables, control structures, and procedures for defining logic.

 NS2-specific commands for creating nodes, links, agents, and running the simulation.

 Tracing and scheduling to control and observe events in the simulation.

By mastering these commands and concepts, you can build and experiment with a wide range

of network simulations in NS2.

	SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) COIMBATORE- 641 035
	Department of Computer Science and Engineering
	19CSE314 – Open Source Software
	ChatGPT said:
	1. Basic TCL Syntax
	2. Variables in TCL
	3. Control Structures in TCL
	If-Else
	For Loop
	While Loop

	4. Procedures in TCL
	5. Common TCL Commands in NS2
	Creating Nodes
	Creating Links Between Nodes
	Setting Routing
	Simulating Traffic (Creating a TCP/UDP connection)
	Creating a Node Configuration
	Creating a Link with Specific Parameters
	Scheduling Events in NS2

	6. Running the Simulation
	7. Trace Files
	8. Example: Basic Network Simulation Script

