
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 1

Create and deploy neural networks using Tensor Flow for Image data

Implementing Neural Networks Using TensorFlow

Deep learning has been on the rise in this decade and its applications are so wide-
ranging and amazing that it’s almost hard to believe that it’s been only a few years in its
advancements. And at the core of deep learning lies a basic “unit” that governs its
architecture, yes, It’s neural networks.

A neural network architecture comprises a number of neurons or activation units as we
call them, and this circuit of units serves their function of finding underlying
relationships in data. And it’s mathematically proven that neural networks can find any
kind of relation/function regardless of its complexity, provided it is deep/optimized
enough, that is how much potential it has.
Now let’s learn to implement a neural network using TensorFlow

Install Tensorflow
Tensorflow is a library/platform created by and open-sourced by Google. It is the most
used library for deep learning applications. Now, creating a neural network might not be
the primary function of the TensorFlow library but it is used quite frequently for this
purpose. So before going ahead let’s install and import the TensorFlow module.

Using the pip/conda command to install TensorFlow in your system
terminal/zsh/cmd command

pip

pip install tensorflow --upgrade

conda

conda install -c conda-forge tensorflow

%tensorflow_version 2.x

https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/?ref=gcse

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 2

Download and Read the Data
You can use any dataset you want, here I have used the red-wine quality dataset from
Kaggle. This is a classification problem, of course, you can learn to apply the concept to
other problems. First, download the dataset in your working directory. Now that the data
is downloaded let’s load the data as data frame.

• Python3

import numpy as np

import pandas as pd

be sure to change the file path

if you have the dataset in another

directly than the working folder

df = pd.read_csv('winequality-red.csv')

df.head()

Output:

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 3

Data Preprocessing/ Splitting into Train/Valid/Test Set

There are multiple ways to split the data, you can define custom functions or use
timestamps if present or use predefined functions like train_test_split in scikit-learn.

Here we have used the sample function to fetch 75% of the data to create the training set
and then used the rest of the data for the validation set. You can and should create a test
set too but here we have a very small dataset and our primary focus here is to get
familiar with the process and train a neural network right?

Now let’s divide our dataset.

• Python3

import tensorflow as tf

75% of the data is selected

train_df = df.sample(frac=0.75, random_state=4)

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 4

it drops the training data

from the original dataframe

val_df = df.drop(train_df.index)

Something to note is that neural networks generally perform better on data that is in the
same range. Like if you have different columns and in 1 column you have values which
range from 1-10 but in another, it ranges from 100-1000, it’s suggested to first scale all
the columns to the same range for better performance.

Now, the most simple method to do that is :
value – (min value of the column) / (range of the column)

• Python3

calling to (0,1) range

max_val = train_df.max(axis= 0)

min_val = train_df.min(axis= 0)

range = max_val - min_val

train_df = (train_df - min_val)/(range)

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 5

val_df = (val_df- min_val)/range

Since we’re done with scaling our data and creating our training and validation datasets,
let’s separate it into features i.e inputs and targets, since that’s how we’re going to pass it
to the model.

• Python3

now let's separate the targets and labels

X_train = train_df.drop('quality',axis=1)

X_val = val_df.drop('quality',axis=1)

y_train = train_df['quality']

y_val = val_df['quality']

We'll need to pass the shape

of features/inputs as an argument

in our model, so let's define a variable

to save it.

input_shape = [X_train.shape[1]]

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 6

input_shape

Output:

[11]

This means that we’ll be passing 11 features as input to the first layer of our neural
network.

Create Model Neural Network

Keras module is built on top of TensorFlow and provides us all the functionality to
create a variety of neural network architectures. We’ll use the Sequential class in Keras
to build our model. First, you can try using the linear model, since the neural network
basically follows the same ‘math’ as regression you can create a linear model using a
neural network as follows :

Create a linear Model

• Python3

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 7

model = tf.keras.Sequential([

tf.keras.layers.Dense(units=1,input_shape=input_shape)])

after you create your model it's

always a good habit to print out it's summary

model.summary()

Output:

But this is basically a linear model, what if your dataset is a bit more complex, and the
relations between the features are much more diverse and you want a non-linear model?
What do you need? The answer is Activation Functions. This is where neural networks

https://www.geeksforgeeks.org/activation-functions-neural-networks/

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 8

truly start to shine. We can’t go in-depth about activation functions in this article but
basically, these add/introduce non-linearity to our model, the more you use them the
more complex patterns our model can find.

Creating a Multilayered Neural Network

We’ll create a 3 layer network with 1 input layer, 1 hidden layer1 with 64 units, and 1
output layer. We’ll use ‘relu’ activation function in the hidden layers. We’ll use
the Sequential method in Keras module, which is very often used to create multilayered
neural networks. In keras, we have different types of neural network layers and/or
transformation layers which you can use to build various types of neural network, but
here we have only used 3 Dense layers(in keras.layers) with relu activation function.

• Python3

model = tf.keras.Sequential([

 tf.keras.layers.Dense(units=64, activation='relu',

 input_shape=input_shape),

 tf.keras.layers.Dense(units=64, activation='relu'),

 tf.keras.layers.Dense(units=1)

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 9

])

model.summary()

Output:

In Keras after you create your model, you need to ‘compile’ other parameters for it, like
it’s shown below. This is kind of like us setting all the parameters for our model.

• Python3

adam optimizer works pretty well for

all kinds of problems and is a good starting point

model.compile(optimizer='adam',

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 10

 # MAE error is good for

 # numerical predictions

 loss='mae')

So we used adam optimizer, and also told the model to compute the mae (mean absolute
error) loss.

Training The Model
Since we’re done with creating and instantiating our model, now it’s time to train it.
We’ll use the fit method to train our model. This method takes features and targets as
targets, and we can also pass the validation_data with it, it will automatically try your
model on validation and note the loss metrics. We also provide the batch_size, e what
this does is breaks our data into small batches and feed it to our model for training in
each epoch, this is very helpful when you have large datasets because it reduces the
RAM and CPU consumption on your machine.
Now here we have only trained our model for 15 epochs because our purpose here is to
get familiar with the process and not the accuracy itself, but you’ll have to increase or
decrease the number of epochs on your machine. There are optimization methods that
you can use such as early stopping that will automatically stop the training when the
model starts overfitting, so you can also try using these, I have provided a link at the
bottom if you want to read about it.

• Python3

losses = model.fit(X_train, y_train,

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 11

 validation_data=(X_val, y_val),

 # it will use 'batch_size' number

 # of examples per example

 batch_size=256,

 epochs=15, # total epoch

)

Output:

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 12

Here we have only trained for 15 epochs but you should definitely train for more and try
changing the model itself.

Generate Predictions and Analyze Accuracy
Since we have completed the training process, let’s actually try using it to predict the
‘wine quality’. For making predictions we’ll use the predict function of the model
object. Let’s only give three examples as inputs and try to predict the wine quality for
the 3.

• Python3

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 13

this will pass the first 3 rows of features

of our data as input to make predictions

model.predict(X_val.iloc[0:3, :])

Output:
array([[0.40581337],

 [0.5295989],

 [0.3883106]], dtype=float32)

Now, let’s compare our predictions with the target value.

• Python3

y_val.iloc[0:3]

Output:

0 0.4

9 0.4

12 0.4

Name: quality, dtype: float64

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 14

As we can see our predictions are pretty close to the real value i.e 0.4 in all three cases.
You can define another function to convert the prediction into an integer to predict
quality on a scale of 1 to 10 for better understanding, but that’s a trivial thing, the main
thing is for you to understand the whole process depicted here.

Visualize Training Vs Validation Loss

You can analyze the loss and figure out if it is overfitting or not easy and then take
appropriate measures accordingly.

• Python3

loss_df = pd.DataFrame(losses.history)

history stores the loss/val

loss in each epoch

loss_df is a dataframe which

contains the losses so we can

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep
Learning Vijayalakshmi.N

Page 15

plot it to visualize our model training

loss_df.loc[:,['loss','val_loss']].plot()

Output:

Key point to note while analyzing the accuracy/error for your model is :
Your loss function continuously decreasing, obviously, but that might not be the case for
the validation dataset, and at some point, your model will overfit the data and the
validation error will start increasing instead of decreasing. So, you can stop at the epoch
where the validation loss seems to be increasing. You can also try some other
optimization algorithms like early stopping (callback in Keras). You can read about
it here.

https://www.geeksforgeeks.org/choose-optimal-number-of-epochs-to-train-a-neural-network-in-keras/?ref=gcse

	Implementing Neural Networks Using TensorFlow
	Install Tensorflow
	Download and Read the Data
	Data Preprocessing/ Splitting into Train/Valid/Test Set
	Create Model Neural Network
	Create a linear Model
	Creating a Multilayered Neural Network

	Training The Model
	Generate Predictions and Analyze Accuracy
	Visualize Training Vs Validation Loss

