

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Consider,

$$a_{o} x^{n} \frac{d^{n} y}{dx^{n}} + a_{o} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_{n-1} x \frac{dy}{dx} + a_{n} y$$

 $= f(x)$
where $a_{o}, a_{1}, a_{2}, \cdots a_{n}$ are constants and
 $f(x)$ is a function of x is called. a homogeneous
linear differential equation of order n with
Valiable Coefficients.
For this type, substitute
 $Z = \log x$ (or) $x = e^{Z}$
Then $x \frac{dy}{dx} = D'y$
 $\frac{x^{2} d^{2}y}{dx^{2}} = \lambda' (\lambda'-1) y$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPATMENT OF MATHEMATICS

	$\chi^{3} \frac{d^{3}y}{dx^{3}} = D'(D'-1)(D'-2)y$ and so on
1	Problems :
0 -	Fronsform the equation to constant coefficient
	Quations :
	$\frac{x^2}{dx^2} + \frac{dy}{dx} + y = \log x \sin(\log x)$
14	oln: Replace logx = Z
	$\frac{dy}{dx} = \frac{dy}{dx}$
	$x^2 d^2 4 = D'(D'-1) 4$
	Griven covuation becomes,
	$\mathcal{D}'(\mathcal{D}'-1)\mathbf{y} + \mathbf{D}'\mathbf{y} + \mathbf{y} = \mathbf{z} \sin \mathbf{z}$
	$(D'^2 - D')y + D'y + y = z \sin z$ $(D'^2 - D' + p' + i)y = z \sin z$
	$(\mathcal{D}^{\prime 2}+1)y = z \sin z$
	The State state of the state
	te de la traite
1.2	