
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

23CST202- OPERATING SYSTEMS

II YEAR AIML B IV SEM

UNIT 1 – OVERVIEW AND PROCESS MANAGEMENT

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

TOPIC – THREADS –MULTI THREADING MODELS

1

Threads (Lightweight)

• What is a thread?
• An independent program counter and stack operating within a process - sometimes

called a lightweight process (LWP)
• Smallest unit of processing (context) that can be scheduled by an operating system

• What resources are owned by a thread?
• CPU registers (PC, SR, SP, ...)
• Stack
• State

• What do all process threads have in common?
• Process resources
• Global variables

• How would you describe inter-thread communication?
• Cheap: can use process memory without needing a context switch.
• Not Secure: one thread can write to memory in use by another thread.

2

Types of Threads

• A thread consists of:
• a thread execution state (Running, Ready, etc.)

• a context (program counter, register set.)
• an execution stack.
• some per-tread static storage for local variables.
• access to the memory and resources of its process (shared with all other threads

in that process.)
• OS resources (open files, signals, etc.)

• Thus, all of the threads of a process share the state and resources of the
parent process (memory space and code section.)

• There are two types of threads:
• User-space (ULT) and

• Kernel-space (KLT).

3

Multi-threading

4

Task Control Block (tcb)

// task control block

typedef struct // task control block

{

char* name; // task name

int (*task)(int,char**); // task address

int state; // task state (P2)

int priority; // task priority (P2)

int argc; // task argument count (P1)

char** argv; // task argument pointers (P1)

int signal;

// task signals (P1)

// void (*sigContHandler)(void); // task mySIGCONT handler

void (*sigIntHandler)(void); // task mySIGINT handler

// void (*sigKillHandler)(void); // task mySIGKILL handler

// void (*sigTermHandler)(void); // task mySIGTERM handler

// void (*sigTstpHandler)(void); // task mySIGTSTP handler

TID parent; // task parent

int RPT; // task root page table (P4)

int cdir; // task directory (P6)

Semaphore *event; // blocked task semaphore (P2)

void* stack; // task stack (P1)

jmp_buf context; // task context pointer (P1)

} TCB;

State = { NEW, READY, RUNNING, BLOCKED, EXIT
Priority = { LOW, MED, HIGH, VERY_HIGH, HIGHEST }

Pending semaphore when blocked.

5

User-Level Threads

• User-level threads avoid the kernel and are managed by the process.
• Often this is called "cooperative multitasking" where the task defines a set of

routines that get "switched to" by manipulating the stack pointer.

• Typically each thread "gives-up" the CPU by calling an explicit switch, sending a
signal or doing an operation that involves the switcher.

• A timer signal can force switching.

• User threads typically can switch faster than kernel threads [however, Linux
kernel threads' switching is actually pretty close in performance].

6

User-Level Threads

• Disadvantages.
• User-space threads have a problem that a single thread can monopolize the

timeslice thus starving the other threads within the task.
• Also, it has no way of taking advantage of SMPs (Symmetric MultiProcessor

systems, e.g. dual-/quad-Pentiums).
• Lastly, when a thread becomes I/O blocked, all other threads within the task lose

the timeslice as well.

• Solutions/work arounds.
• Timeslice monopolization can be controlled with an external monitor that uses

its own clock tick.
• Some SMPs can support user-space multithreading by firing up tasks on specified

CPUs then starting the threads from there [this form of SMP threading seems
tenuous, at best].

• Some libraries solve the I/O blocking problem with special wrappers over system
calls, or the task can be written for nonblocking I/O.

7

 Advantages.
 Since the clocktick will determine the switching times, a task is less likely to hog the

timeslice from the other threads within the task.

 I/O blocking is not a problem.

 If properly coded, the process automatically can take advantage of SMPs and will
run incrementally faster with each added CPU.

Kernel-Level Threads

• KLTs often are implemented in the kernel using several tables (each task
gets a table of threads).
• The kernel schedules each thread within the timeslice of each process.

• There is a little more overhead with mode switching from user to kernel mode
because of loading of larger contexts, but initial performance measures indicate
a negligible increase in time.

8

User-Level and Kernel-Level Threads

9

