SNS COLLEGE OF TECHNOLOGY %

INSTIIOIPNE;

Coimbatore-35

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

23CST202- OPERATING SYSTEMS

I YEAR AIML B 1V SEM

UNIT 1 - OVERVIEW AND PROCESS MANAGEMENT
TOPIC - PROCESS SCHEDULING OPERATING ON PROCESS

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

/)

Process Scheduling

IN SO

* Maximize CPU use, quickly switch processes onto CPU for
time sharing

* Process scheduler selects among available processes for
next execution on CPU

* Maintains scheduling queues of processes
* Job queue — set of all processes in the system

* Ready queue —set of all processes residing in main memory, ready
and waiting to execute

* Device queues — set of processes waiting for an I/0 device
* Processes migrate among the various queues

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

L

ko
Lo S

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

queue header

head

PCB,

tail

N

head

tail

Iy

head

tail

¥

head

tail

head

ﬁ"‘”’"‘;u(.ﬁeady Queue And Various |/O Device Queues

PCB,

h 4

registers

PCB,

PCB,,

registers

PCB,

PCB

tail

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

FIrurionis

=Representation of Process Scheduling
S

CLLTHITITIONS

®m Queueing diagram represents queues, resources, flows

_____, ready queue CPU g

/O /O queue = l/O request =
time slice :

expired

child fork a
@7 child ¥
interrupt wait for an
occurs interrupt

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

Schedulers =

L rrrurions

* Short-term scheduler (or CPU scheduler) — selects which process should be executed
next and allocates CPU

* Sometimes the only scheduler in a system
* Short-term scheduler is invoked frequently (milliseconds) = (must be fast)

* Long-term scheduler (or job scheduler) — selects which processes should be brought
into the ready queue
* Long-term scheduler is invoked infrequently (seconds, minutes) = (may be slow)
* The long-term scheduler controls the degree of multiprogramming

* Processes can be described as either:

* 1/0O-bound process — spends more time doing I/O than computations, many short
CPU bursts

* CPU-bound process — spends more time doing computations; few very long CPU
bursts

* Long-term scheduler strives for good process mix

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

P Addition of Medium Term Scheduling .

,.3/\[V\z-
R, K2
Fa M5

q_

LI rIrurnions

m Medium-term scheduler can be added if degree of multiple
programming needs to decrease

e Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

swap in partially executed swap out
swapped-out processes

ready queue @} » end
I/O waiting
queues

Yy

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

Multitasking in Mobile Systems _

:yﬁ/ LTSI 115775

* Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

* Due to screen real estate, user interface limits iOS provides for a
* Single foreground process- controlled via user interface

* Multiple background processes— in memory, running, but not on the
display, and with limits

 Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback
* Android runs foreground and background, with fewer limits
e Background process uses a service to perform tasks
* Service can keep running even if background process is suspended
* Service has no user interface, small memory use

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

Context Switch

TN SO

 When CPU switches to another process, the system must
save the state of the old process and load the saved state for
the new process via a context switch

* Context of a process represented in the PCB

* Context-switch time is overhead; the system does no useful
work while switching
* The more complex the OS and the PCB = the longer the context
switch
* Time dependent on hardware support

* Some hardware provides multiple sets of registers per CPU =»
multiple contexts loaded at once

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

Operations on Processes e

* System must provide mechanisms for:
* process creation,
* process termination,
* and so on as detailed next

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

Process Creation

* Parent process create children processes, which, in turn
create other processes, forming a tree of processes

* Generally, process identified and managed via a process
identifier (pid)

* Resource sharing options
* Parent and children share all resources
* Children share subset of parent’s resources
* Parent and child share no resources

* Execution options
* Parent and children execute concurrently
* Parent waits until children terminate

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

A Tree of Processes in Linux -4~

-~

f
LB rrrurions

login
pid = 8415

kthreadd sshd
pid = 2 pid = 3028

bash khelper pdflush . sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
3 = s
pid = 9298 pid = 9204 pid =

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

Process Creation (Cont.)

R

TN SO

Z
\’1_/] r -

« Address space
 Child duplicate of parent
 Child has a program loaded into it

* UNIX examples
 fork () system call creates new process

* exec () system call used after a fork () to replace the process’
memory space with a new program

parent R /w—ait\ resumes

child ' exec() »

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

o= C Program Forking Separate Process
ey

o -
~»

FIrIrionss
#include <sys/types.h>
#include <stdio.h>

#include <unistd.h>

int main()

{

pid -t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

}

return 0;

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

., Creating a Separate Process via Windows AP

Fop \
o Yo
:'?Q - 8]
ay) vy

8 ¢ SITITIOn:
7 #include <stdio.h> <
#include <windows.h>

int main(VOID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si,

&pi))
{

fprintf(stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject (pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

Process Termination

INSTIINP o

* Process executes last statement and then asks the operating
system to delete it using the exit () system call.
e Returns status data from child to parent (viawait ())
* Process’ resources are deallocated by operating system

* Parent may terminate the execution of children processes
using the abort () system call. Some reasons for doing so:
 Child has exceeded allocated resources
 Task assigned to child is no longer required

* The parent is exiting and the operating systems does not allow a
child to continue if its parent terminates

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

Process Termination

INSTIINP o

* Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children
must also be terminated.

» cascading termination. All children, grandchildren, etc. are
terminated.

* The termination is initiated by the operating system.

* The parent process may wait for termination of a child process
by using the wait () systemcall. The call returns status
information and the pid of the terminated process

pid = wait(&status) ;

* If no parent waiting (did not invoke wait ()) process is a
zombie

* If parent terminated without invoking wait, processis an
orphan

OPERATING SYSTEM/DR.KIRUBA M/APIT/SNSCT

