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Process Scheduling

IN SO

* Maximize CPU use, quickly switch processes onto CPU for
time sharing

* Process scheduler selects among available processes for
next execution on CPU

* Maintains scheduling queues of processes
* Job queue — set of all processes in the system

* Ready queue —set of all processes residing in main memory, ready
and waiting to execute

* Device queues — set of processes waiting for an I/0 device
* Processes migrate among the various queues
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=Representation of Process Scheduling
S

CLLTHITITIONS

®m  Queueing diagram represents queues, resources, flows
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Schedulers =
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* Short-term scheduler (or CPU scheduler) — selects which process should be executed
next and allocates CPU

* Sometimes the only scheduler in a system
* Short-term scheduler is invoked frequently (milliseconds) = (must be fast)

* Long-term scheduler (or job scheduler) — selects which processes should be brought
into the ready queue
* Long-term scheduler is invoked infrequently (seconds, minutes) = (may be slow)
* The long-term scheduler controls the degree of multiprogramming

* Processes can be described as either:

* 1/0O-bound process — spends more time doing I/O than computations, many short
CPU bursts

* CPU-bound process — spends more time doing computations; few very long CPU
bursts

* Long-term scheduler strives for good process mix
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P Addition of Medium Term Scheduling .
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m  Medium-term scheduler can be added if degree of multiple
programming needs to decrease

e Remove process from memory, store on disk, bring back in
from disk to continue execution: swapping

swap in partially executed swap out
swapped-out processes

ready queue @} » end
I/O waiting
queues
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Multitasking in Mobile Systems _
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* Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

* Due to screen real estate, user interface limits iOS provides for a
* Single foreground process- controlled via user interface

* Multiple background processes— in memory, running, but not on the
display, and with limits

 Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback
* Android runs foreground and background, with fewer limits
e Background process uses a service to perform tasks
* Service can keep running even if background process is suspended
* Service has no user interface, small memory use
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Context Switch
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 When CPU switches to another process, the system must
save the state of the old process and load the saved state for
the new process via a context switch

* Context of a process represented in the PCB

* Context-switch time is overhead; the system does no useful
work while switching
* The more complex the OS and the PCB = the longer the context
switch
* Time dependent on hardware support

* Some hardware provides multiple sets of registers per CPU =»
multiple contexts loaded at once
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Operations on Processes e

* System must provide mechanisms for:
* process creation,
* process termination,
* and so on as detailed next
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Process Creation

* Parent process create children processes, which, in turn
create other processes, forming a tree of processes

* Generally, process identified and managed via a process
identifier (pid)

* Resource sharing options
* Parent and children share all resources
* Children share subset of parent’s resources
* Parent and child share no resources

* Execution options
* Parent and children execute concurrently
* Parent waits until children terminate
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A Tree of Processes in Linux -4~
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login
pid = 8415

kthreadd sshd
pid = 2 pid = 3028

bash khelper pdflush . sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
3 = s
pid = 9298 pid = 9204 pid =
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Process Creation (Cont.)
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« Address space
 Child duplicate of parent
 Child has a program loaded into it

* UNIX examples
 fork () system call creates new process

* exec () system call used after a fork () to replace the process’
memory space with a new program

parent R /w—ait\ resumes

child ' exec() »
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#include <sys/types.h>
#include <stdio.h>

#include <unistd.h>

int main()

{

pid -t pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL) ;
printf("Child Complete");

}

return 0;
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., Creating a Separate Process via Windows AP
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8 ¢ SITITIOn:
7 #include <stdio.h> <
#include <windows.h>

int main(VOID)

{

STARTUPINFO si;
PROCESS_INFORMATION pi;

/* allocate memory */
ZeroMemory (&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory (&pi, sizeof(pi));

/* create child process */
if (!CreateProcess(NULL, /* use command line */
"C:\\WINDOWS\\system32\\mspaint.exe", /* command */
NULL, /* don’t inherit process handle */
NULL, /* don’t inherit thread handle */
FALSE, /* disable handle inheritance */
0, /* no creation flags */
NULL, /* use parent’s environment block */
NULL, /* use parent’s existing directory */
&si,

&pi))
{

fprintf(stderr, "Create Process Failed");
return -1;
}
/* parent will wait for the child to complete */
WaitForSingleObject (pi.hProcess, INFINITE);
printf("Child Complete");

/* close handles */

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread) ;
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Process Termination
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* Process executes last statement and then asks the operating
system to delete it using the exit () system call.
e Returns status data from child to parent (viawait ())
* Process’ resources are deallocated by operating system

* Parent may terminate the execution of children processes
using the abort () system call. Some reasons for doing so:
 Child has exceeded allocated resources
 Task assigned to child is no longer required

* The parent is exiting and the operating systems does not allow a
child to continue if its parent terminates
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Process Termination
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* Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children
must also be terminated.

» cascading termination. All children, grandchildren, etc. are
terminated.

* The termination is initiated by the operating system.

* The parent process may wait for termination of a child process
by using the wait () systemcall. The call returns status
information and the pid of the terminated process

pid = wait(&status) ;

* If no parent waiting (did not invoke wait () ) process is a
zombie

* If parent terminated without invoking wait, processis an
orphan
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