
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

23CST202- OPERATING SYSTEMS

II YEAR AIML B IV SEM

UNIT 2 – PROCESS SCHEDULING AND SYNCHRONIZATION

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE
LEARNING

TOPIC – SCHEDULING ALGORITHM

Preemptive vs. Non-preemptive
scheduling

• Non-preemptive scheduling:
• Each process completes its full CPU burst cycle before the next

process is scheduled.

• No time slicing or CPU stealing occurs.

• Once a process has control of the CPU, it keeps control until it gives it
up (e.g. to wait for I/O or to terminate).

• Works OK for batch processing systems, but not suitable for time
sharing systems.

• Preemptive scheduling:
• A process may be interrupted during a CPU burst and another

process scheduled. (E.g. if the time slice of the first process expires).

• More expensive implementation due to process switching.

• Used in all time sharing and real time systems.

Costs of Preemptive Scheduling

• Preemptive scheduling leads to some problems that the OS must deal
with:

• Problem 1: inconsistent data:
• Suppose process 1 is updating data when preempted by process 2.

• Process 2 may then try to read the data, which is in an inconsistent state.

• The OS needs mechanisms to coordinate shared data.

• Problem 2: Kernel preemption:
• Suppose the kernel is preempted while updating data (e.g. I/O queues) used

by other kernel functions. This could lead to chaos.

• UNIX solution: Wait for the system call to complete or have an I/O block take
place if in kernel mode.

• Problem with UNIX solution: Not good for real time computing.

Dispatcher

• Process scheduling determines the order in which processes execute.

• Dispatcher module gives control of the CPU to the process selected
by the short-term scheduler; this involves:
• switching context

• switching to user mode

• jumping to the proper location in the user program to restart that program

• Dispatch latency – time it takes for the dispatcher to stop one process
and start another running.

Scheduling Criteria

• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their execution
per time unit

• Turnaround time – amount of time to execute a particular
process

• Waiting time – amount of time a process has been waiting in
the ready queue

• Response time – amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)

Optimization Criteria

• The scheduling criteria are optimization problems. We would like to
maximize or minimize each.

• Question: Maximize or Minimize?
• CPU utilization:

• throughput:

• turnaround time:

• waiting time:

• response time:

• Can all criteria be optimized simultaneously?

• Usually try to optimize average times (although sometimes optimize
minimum or maximum)

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

• Waiting time for P1 = ; P2 = ; P3 =

• Average waiting time:

P1 P2 P3

24 27 300

Process that requests the CPU first is allocated the CPU first.
Easily managed with a FIFO queue.
Often the average waiting time is long.

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

• The Gantt chart for the schedule is:

• Waiting time for P1 = ; P2 = ; P3 =

• Average waiting time:

• Much better than previous case.

• Convoy effect: short processes line up behind long process.

• FCFS is not good for time-sharing systems. (Non-preemptive).

P1P3P2

63 300

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time.

• Two schemes:
• nonpreemptive – once CPU given to the process it cannot be preempted until

completes its CPU burst.

• preemptive – if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is know
as the
Shortest-Remaining-Time-First (SRTF).

• SJF is optimal – gives minimum average waiting time for a given set of
processes.

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

• SJF (non-preemptive)

• Average waiting time =

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

• SJF (preemptive)

• Average waiting time =

P1 P3P2

42 110

P4

5 7

P2 P1

16

Example: RR with Quantum=10ms

• Consider the following set of process that arrive at time 0 in the order
A,B,C,D with the following given CPU burst time. Find the average waiting
time with RR of quantum : 10 ms

Process CPU burst time (ms)

A 20

B 40

C 14

D 6

A B C D A B C B B

Gantt Chart:

0 10 20 30 36 46 56 60 70 80

W (A) = 36-10 =26 ms W (B) = (10-0) + (46-20) + (60-56)= 40 ms

W (C) = (20-0) + (56-30) = 46 ms W (D) = 30-0 = 30 ms

Average waiting time = (26+40+46+30) /4 = 142/4 = 35.5 ms

Example: RR with Quantum = 10ms
• Consider the following set of process that arrive at time 0 in the order

A,B,C,D with the following given CPU burst time. Find the average waiting
time with RR of quantum = 10 ms and context switch time = 2ms

Process CPU burst time I/O CPU burst time

A 10 40 10

B 40 - -

C 14 - -

D 6 - -

A B C D B C A B B

0 10 12 22 24 34 36 42 44 54 56 60 62 72 74 84 86 96

0 10 50

Wait (A) = 62-50 = 12 ms Wait (B) = 12+22+20+2 = 56 ms

Wait (C) = 24 + 22 = 46 ms Wait (D) = 36 ms

Average waiting time = 150/4 = 37.5 ms

Aidle

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better
response

• q should be large compared to context switch time

• q usually 10ms to 100ms, context switch < 10 microsecond

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

Time Quantum and Context Switch Time

Figure showing how smaller time quantum increases context

switches.

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority
((smallest or largest integer value may be defined as the
highest priority)
• Preemptive

• Nonpreemptive

• SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

• Problem  Starvation – low priority processes may never
execute

• Solution  Aging – as time progresses increase the priority of
the process

Example - Priority Scheduling
Process Arrival time CPU burst time Priority

A 0 100 3

B 0 10 1

C 0 300 3

D 0 60 5

E 80 150 4

Non-preemptive priority Algorithm:

D A E C B

0 60 160 310 610 620

W (A) = 60ms, W (B) = 610ms, W (C) = 310ms, W (D) = 0 ms, W (E) = 80ms

Preemptive priority Algorithm (if a job come with high priority there is a switching):

D A E A C B

0 60 80 230 310 610 620

W(A) = 210 ms, W(B) = 610 ms, W(C) = 310 ms, W(D)=0ms, Wait (E) = 0 ms

5 highest

1 lowest

Example - Priority Scheduling

ProcessAarri Burst TimeT Priority

P1 10 3

P2 1 1 (highest)

P3 2 4

P4 1 5

P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

1

0 1 19

P
1

P
2

16

P
4

P
3

6 18

P

Multilevel Queue Scheduling

• Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups(classes).

• Among classes a priority scheduling algorithm is used, inside a class RR is
used.

• A ready queue is used for each class.

• The following shows a system with five priority classes where RR is used in
each class. As long as there are runnable processes in priority class 5, just
run each one for one quantum (i.e. round robin fashion), and never bother
with lower priority classes. If priority class 5 in empty , then run the class 4
processes in round robin fashion , and so on. If priorities are not adjusted
from time to time, lower priority classes may all starve.

• While a class 3 process is running if a highest queue process arrives, class 3
process would be preempted.

• Time quantum value can be different for classes.

• Each queue may have its own scheduling algorithm.

Multilevel Queue Scheduling

(Priority 5)

(Priority 1)

Multilevel Queue Scheduling
Process Arrival time CPU burst time (ms) Priority

A 0 10 2

B 3 7 1

C 4 6 2

D 12 5 1

E 18 8 1

Assume that Quantum=4 ms for Queue 1 and Quantum =3 ms for Queue

2. Assume that Queue 1 has higher priority when compared to Queue 2.

A B B A D D C E E A C A C

0 3 7 10 12 16 17 18 22 26 29 32 34 36

W (A) = 24ms W (B) = 0ms W (C) = 26ms W (D) = 0ms

W (E) = 0ms W (F) = 10ms

Multilevel Feedback Queue Scheduling

• Normally, when the multilevel queue scheduling algorithm is used,
processes are permanently assigned to a queue when they enter the
system.

• The multilevel feedback queue scheduling algorithm allows a process to
move between queues.

• The scheduler first executes all processes in Queue 1. Only when Queue 1
is empty will it execute processes in Queue 2. Similarly, processes in Queue
3 will be executed only if Queues 1 and 2 are empty. A process that arrives
for Queue 1 will preempt a process in Queue 2.

• A process entering the ready queue is put in Queue 1. If it does not finish
within one quantum, it is moved to the tail of Queue 2. If it does not
complete there in one quantum, it is then preempted and put into Queue
3.

Multilevel Feedback Queue Scheduling

The figure above shows an example for multilevel feedback queue where

Queue 1 uses RR with Quantum = 8ms, Queue 2 uses RR with

Quantum = 16 and Queue 3 uses FCFS.

Queue 1

Queue 2

Multilevel Feedback Queue Scheduling
Process Arrival time CPU burst time I/O CPU burst time

A 0 5 6 0

B 3 4 2 3

C 4 2 3 4

D 7 5 2 7

E 14 3 2 4

Assume Queue 1 with Quantum =4 ms and Queue 2 with Quantum =

7ms, both use Round Robin.

Queue_1 : ABCDBCEED

Queue_2 : AD

A B C D B C E A D E idle D

0 4 8 10 14 17 21 24 25 26 30 34 41

idle B C idle E A D

0 8 10 13 24 26 32 34

CPU

I/O

Algorithm Evaluation

• How to select CPU-scheduling algorithm for an OS?

• Determine criteria, then evaluate algorithms
• Takes a particular predetermined workload and defines the performance

of each algorithm for that workload

• Consider 5 processes arriving at time 0, in the order given, with
the length of the CPU burst given in ms.

• Consider the FCFS, SJF and RR(quantum = 10 ms) scheduling
algorithms for this set of processes. Which algorithm would give
the minimum average waiting time?

Algorithm Evaluation

For each algorithm, calculate minimum average waiting time

Simple and fast, but requires exact numbers for input, applies
only to those inputs

FCFS is (0+10+39+42+49)/5=28ms:

Non-preemptive SJF is (10+32+0+3+20)/5=13ms:

RR is (0+32+20+23+40)/5=23ms:

Operating System Concepts

Multiple-Processor Scheduling

• CPU scheduling more complex when multiple CPUs are available.

• Homogeneous processors within a multiprocessor: We concentrate on
systems where the processors are identical (or homogeneous) in terms of
their functionality; any available processor can then be used to run any
processes in the queue.

• Load sharing : If several identical processors are available, then load sharing
can occur. It would be possible to provide a separate queue for each
processor. In this case, however, one processor could be idle, with an empty
queue, while another processor was very busy. To prevent this situation, we
use a common ready queue. All processes go into one queue and are
scheduled onto any available processor.

• Asymmetric multiprocessing – only one processor accesses the system data
structures, alleviating the need for data sharing. having all scheduling
decisions, I/O processing, and other system activities handled by one single
processor-the master server. The other processors only execute user code.

