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UNIT III – FINITE ELEMENT TECHNIQUES 

Strong and Weak Formulations in CFD 

The mathematical models of heat conduction and elastostatics consist of (partial) differential 

equations with initial and boundary conditions. This is also referred to as the so-called Strong 

Form of the problem. In this chapter, we shall therefore discuss the formulation in terms of so-

called strong and weak forms. To facilitate this, we consider simple differential equations, 

which turn out to govern one-dimensional heat flow as well as other physical phenomena like 

elastic bars, flexible strings, etc. To obtain a firm background, it is convenient first to establish 

this differential equation. So let’s get started!!! 

The partial differential equations in the last paragraph are second-order partial differential 

equations. This demands a high degree of smoothness for the solution u(x). That means that 

the second derivative of the displacement has to exist and has to be continuous! This also 

implies requirements for parameters that are not influenceable like the geometry (sharp edges) 

and material parameters (different Young’s modulus in a material). 
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Consider the static response of an elastic bar with variable cross section as shown in the

picture above. This is an example of a problem in linear stress analysis or linear elasticity,

where we seek to find the stress distribution σ(x) in the bar. The stress will result from the

deformation of the body, which is characterized by the displacement of points in the body,

u(x). This displacement implies a strain denoted by ϵ(x). You can see in the picture that

the body is subjected to a body force or distributed loading b(x) (units are force per

length). In addition, we can describe the body force which could be due to gravity.

Furthermore, loads can be prescribed at the ends of the bar, where the displacement is not

prescribed → these loads are called tractions and denoted by ¯t (units are force per area

→ multiplied with an area give us the applied force).

The bar must satisfy the following conditions:

1. Equilibrium must be fulfilled

2. Stress-Strain law must be satisfied. σ(x) = E(x)ϵ(x)

3. Displacement field must be compatible

4. Strain-Displacement equations must be satisfied

The differential equation of this bar can be obtained from equilibrium of external forces

b(x) as well as the internal forces p(x) acting on the body in the axial direction (along x-

axis).

Summing the forces in x-direction:

−p(x) + b(x + )Δx + p(x + Δx) = 0

Rearranging the terms:

+ b(x + ) = 0

Δx

2

p(x + Δx) − p(x)

Δx

Δx

2
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The limit of this equation with Δx → 0 makes the first term the derivative dp/dx and the

second term becomes b(x). So we can write:

+ b(x) = 0 (1)

This equation expresses the equilibrium equation in terms of the internal force p. Stress is

defined as:

σ(x) = so p(x) = A(x)σ(x) (2)

The strain-displacement equation is obtained by:

ϵ(x) = =

Taking the limit of above for Δx → 0, we see that:

ϵ(x) = (3)

The stress-strain law, also known as Hooke’s law has already been introduced in earlier

chapters:

σ(x) = E(x)ϵ(x) (4)

Substituting (3) in (4) and that result into (1) yields:

(AE ) + b = 0, 0 < x < l (5)

Equation (5) is a second-order ordinary differential equation. u(x) is the dependent

variable, which is the unknown function, and x the independent variable. Equation (5) is a

specific form of equation (1). Equation (1) applies both linear and nonlinear materials

whereas (5) assumes linearity in the definition of the strain (3) and stress-strain law (4).

Compatibility is satisfied by requiring the displacement to be continuous.

To solve the differential equation, we need to prescribe boundary conditions at the two

ends of the bar. At x = l, the displacement, u(x = l), is prescribed; at x = 0, the force per

unit area, or traction, denoted by ¯t, is prescribed. We write these conditions as:

σ(0) = (E )
x=0

= = −¯t

u(l) = ¯̄ū

(6)

Note that the lines above the letters indicate a prescribed boundary value.

dp

dx

p(x)

A(x)

elongation

originallength

u(x + Δx) − u(x)

Δx

du

dx

d

dx

du

dx

du

dx

p(0)

A(0)
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The traction ¯t has the same units as stress (force/area), but its sign is positive when it acts

in the positive x-direction regardless of which face it is acting on, whereas the stress is

positive in tension and negative in compression, so that on a negative face a positive stress

corresponds to a negative traction.

The governing differential equation (5) along with the boundary conditions (6) is called

the strong form of the problem.

To summarize, the strong form consists of the governing equation and the boundary

conditions, which for example are

(a) (AE ) + b = 0 on 0 < x < l

(b) σ(x = 0) = (E )
x=0

= −¯t (7)

(c) u(x = l) = ¯̄ū

The weak form (1D)

To develop the finite element formulation, the partial differential equations must be

restated in an integral form called the weak form. The weak form and the strong form are

equivalent! In stress analysis the weak form is called the principle of virtual work.

We start by multiplying the governing equation (7a) and the traction boundary condition

(7b) by an arbitrary function w(x) and integrating over the domains on which they hold:

for the governing equation, the pertinent domain is [0, l]. For the traction boundary, it is

the cross-sectional area at x = 0 (no integral needed since this condition only holds only at

a point but we multiply it with A). The results are:

(a) ∫
l

0

w [ (AE ) + b] dx = 0 ∀w (13)

(b) (wA(E + ¯t))
x=0

= 0 ∀w

The function w is called weight function or test function. In the above, ∀w denotes that

w(x) is an arbitrary function, i.e. (13) has to hold for all functions w(x). Arbitrariness of

the weight function is crucial for the weak form. Otherwise the strong form is NOT

equivalent to the weak form.

We did not enforce the boundary condition on the displacement in (13) by the weight

function. It will be seen that it is easy to construct trial solutions u(x) that satisfy this

boundary condition. We will also see that all weight functions satisfy

w(l) = 0 (14)

d

dx

du

dx

du

dx

d

dx

du

dx

du

dx
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In solving the weak form, a set of admissible solutions u(x) that satisfy certain conditions

is considered (also called trial solutions or candidate solutions). We could use equation

(13) to construct a FEM method. But since we have the second derivative of $u(x)$$ in the

equation, we would need very smooth trial functions which are difficult to construct in

more than one dimension.

The resulting stiffness matrix would also be not symmetric! We will transform (13) into a

form containing only first derivatives. This will give us a symmetric stiffness matrix and

allows us to use less smooth solutions.

We rewrite (13a) in an equivalent form:

∫
l

0

w (AE ) dx + ∫
l

0

wbdx = 0 ∀w (15)

Applying integration by parts on equation (15):

∫
l

0
w (AE ) dx = (wAE )

∣
∣
∣

l

0

− ∫
l

0
AE dx (16)

Using (16),equation (15) can be written as:

⎛
⎜⎜⎜
⎝
wA

σ
E

⎞
⎟⎟⎟
⎠

∣
∣
∣

l

0

− ∫
l

0

AE dx + ∫
l

0

wbdx = 0 ∀w with w(l) = 0

We note that by the stress-strain law and strain-displacement equations, the underscored

boundary term is the stress σ:

The first term in equation (18) vanishes since we assumed w(l) = 0: for that reason is it

useful to construct weight functions that vanish on prescribed displacement boundaries.

Though the term looks insignificant, it would lead to loss of symmetry in the final equation.

Form (13b), we can see that the second term equals (wA¯t)x=0, so equation (18) becomes

To summarize the approach: We multiplied the governing equation and traction boundary

by an arbitrary, smooth weight function and integrated the products over the domain

where they hold. We also transformed the integral so that the derivatives are of lower

order.

d

dx

du

dx

d

dx

du

dx

du

dx

dw

dx

du

dx

du

dx

dw

dx

du

dx
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The crux of this approach: Trial solutions that satisfy the equation developed for all

smooth w(x) with w(l) = 0 is the solution. We obtain the solution as follows:

Equation (20) is called the weak form. The name states that solutions to the weak form do

not need to be as smooth as solutions of the strong form. → weaker continuity

requirements

You have to keep in mind that the solution satisfying equation (20) is also the solution of

the strong counterpart of this equation. Also remember that the trial solutions u(x) must

satisfy the displacement boudary conditions. This is an essential property of the trial

solutions and that is why we call those boundary conditions essential boundary

conditions. The traction boundary conditions emanate naturally from equation (20) which

means that the trial solutions do not need to be constructed to satisfy the traction

boundary condition. These boundary conditions are therefore called natural boundary

conditions.

A trial solution that is smooth AND satisfies the essential boundary conditions is called

admissible. A weight function that is smooth AND vanishes on essential boundaries is

admissible. When weak forms are used to solve a problem, the trial solutions and weight

functions must be admissible. Also notice that equation (20) is symmetric in w and u which

will lead to a symmetric stiffness matrix. The highest order derivative that appears in this

equation is of first order!
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