

SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 23ECT203 – DIGITAL SIGNAL PROCESSING

II YEAR/ IV SEMESTER

UNIT 1 – DISCRETE FOURIER TRANSFORM

TOPIC – REVIEW OF SIGNALS AND SYSTEMS

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT

SIGNALS

- **Signal:** A function of one or more independent variables which contains some information
- Radio Signal & TV Signal are **Electrical Signals** \bullet
- Sound Signal & Pressure Signal are **Non Electrical Signals** •
- Signal is a function of time **i.e f(t)** \bullet

NOISE SIGNAL

- Noise is a Signal??? •
- Yes, Noise is also a signal which doesn't contains any information •

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT

COMMUNICATION SYSTEM

- A communication system has an information signal plus noise signals •
- It consists of an interconnection of smaller systems •

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT

CLASSIFICATION OF SIGNALS

- It can be classified into two types ullet
- Continuous time signal
- Discrete time signal
- It can be further classified into four types lacksquare
- Periodic & Aperiodic Signal
- Even and Odd Signal
- Energy and Power Signal
- Deterministic and Random Signal

DISCRETE TIME SIGNAL

Digital Signal: The signals that are discrete in time and quantized in amplitude is called digital signal

- **Discrete Time Signal:** A signal that is defined for discrete instants of time is \bullet known as discrete time signal. Discrete time signals are continuous in amplitude and discrete in time.
- It is also obtained by sampling a continuous time signal. \bullet
- It is denoted by **x(n)** \bullet

PERIODIC AND APERIODIC SIGNAL

DT Periodic Signal

APeriodic Signal

17/01/2025

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT

EVEN AND ODD SIGNAL

- **Even Signal:** A Signal is said to be an even signal if the inversion of time axis does not change the amplitude. Eg. Cosine Wave: Cos (- θ) = Cos θ
- Even signal satisfies the condition x(-n) = x(n)

 $X_{e}(n) = {x(n) + x(-n)}/{2}$

Odd Signal: A signal is said to be an odd signal if the inversion of time axis also inverse the amplitude of the signal. Eg. Sine Wave: Sin $(-\theta) = -Sin \theta$

Odd signal satisfies the condition x(-n) = -x(n)

 $X_{n}(n) = {x(n) - x(-n)}/{2}$

ENERGY AND POWER SIGNAL

• Energy Signal: The signal which has finite energy and zero average power. 0<E<∞

Energy
$$E = \lim_{N \to \infty} \sum_{n=-N}^{N} |x(n)|$$

• Power Signal: The signal which has finite average power and infinite energy. 0<P<∞

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)| \leq \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)| <\frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)| <\frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)| <\frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)| <\frac{1}{2N+1} \sum_{n=-N}^{$$

17/01/2025

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT 10/20

 $\iota)|^2$

DETERMINISTIC AND RANDOM SIGNAL

Deterministic signal: A signal which can be completely represented by any mathematical equation Sinusoidal Signal **Eg: Sinusoidal Signal**

Eg: Noise Signal

Random signal

•

DISCRETE TIME SIGNALS

Unit Impulse signal

4 З 2

17/01/2025

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT

SYSTEM

- A System is a set of elements or functional blocks that are connected together to produces an output with response to input signal
- Systems process input signals to produce output signals
- Eg. Audio amplifier, Receiver

17/01/2025

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT 13/20

Output Signal

Example: Audio Amplifier

17/01/2025

14/20 REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT

DISCRETE TIME SYSTEM

- Discrete Time System: It operates on a discrete time signal (input or excitation) and produces another discrete time signal (output or response)
- Response $y(n) = N \{x(n)\}$

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT 15/20

APPLICATION AREAS

- Communications
- Audio and Speech Processing
- Image, Video Processing
- **Circuit Design** •
- **Biomedical Engineering** •
- Military Applications •

APPLICATIONS

- Acoustics \bullet
- Communications: Transmission in mobile phones, GPS, radar and sonar \bullet
- Multimedia: Compress signals to store data such as CDs, DVDs ullet

APPLICATIONS

- Biomedical: Extract information from biological signals
- Electrocardiogram (ECG) electrical signals generated by the heart
- Electroencephalogram (EEG) electrical signals generated by the brain
- Medical Imaging
- Biometrics: Fingerprint identification and iris recognition

17/01/2025

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT

ASSESSMENT

- A signal which contains ------
- List the classification of signals. 2.
- 3. What is meant by Periodic and Aperiodic Signal.
- A signal that is defined for every instants of time is known as --4.
- 5. Define System and mention its types.
- What is meant by deterministic and Random Signal. 6.
- 7. Define Even and Odd Signal.
- 8. Give some applications of signals.

THANK YOU

17/01/2025

REVIEW OF SIGNALS AND SYSTEMS/23ECT203 – DIGITAL SIGNAL PROCESSING/R.SATHISH KUMAR/ECE/SNSCT 20/20

