

SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECT203 - DIGITAL SIGNAL PROCESSING

II YEAR/ IV SEMESTER

UNIT 1 – DISCRETE FOURIER TRANSFORM

TOPIC – OVERLAP SAVE METHOD

SECTIONED CONVOLUTION

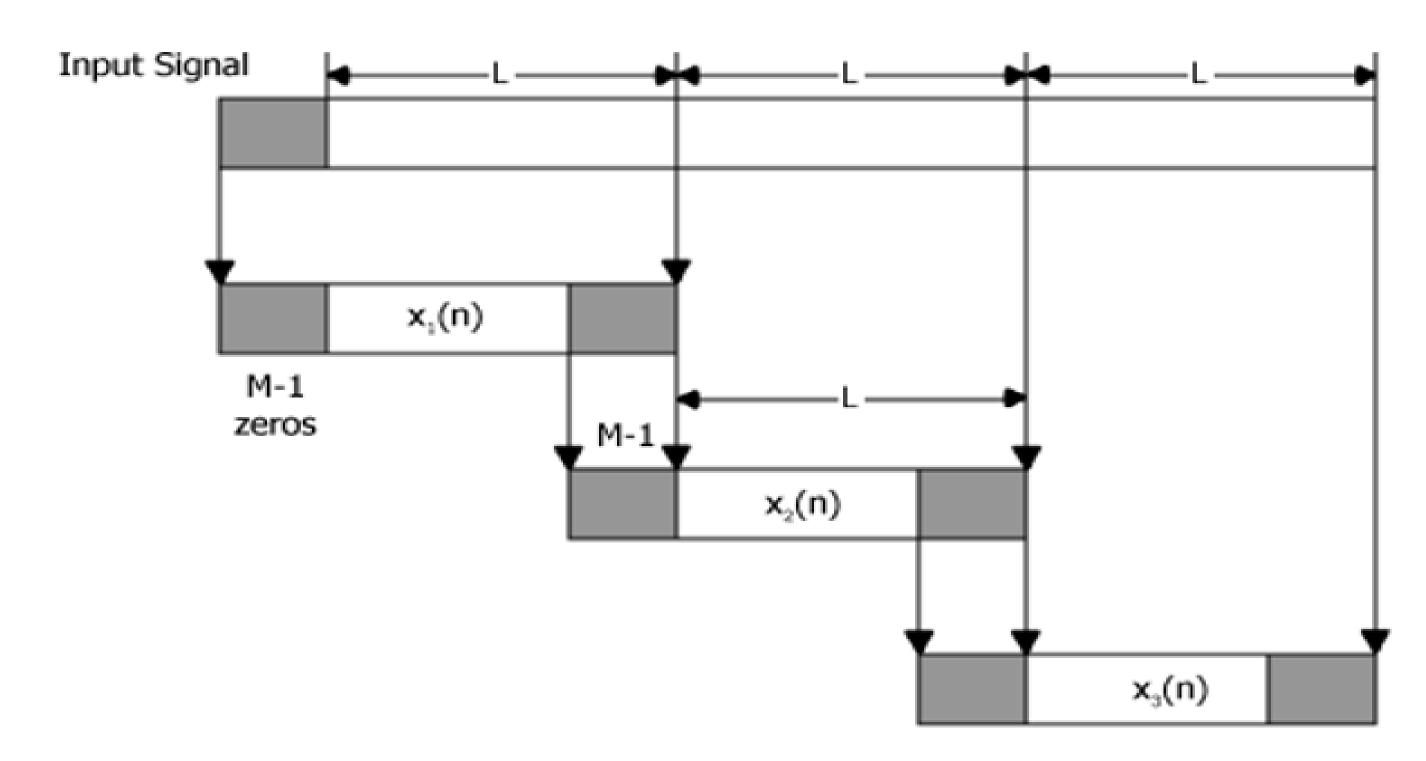
- The response of an LTI system for any arbitrary input is given by linear convolution of the input and the impulse response of the system
- The input sequence or impulse response sequence is very much larger than the other, then it is very difficult to compute the linear convolution for the following reasons:
- The entire sequence should be available before convolution can be carried out. This makes long delay in getting the output
- Large amounts of memory is required to store the sequences

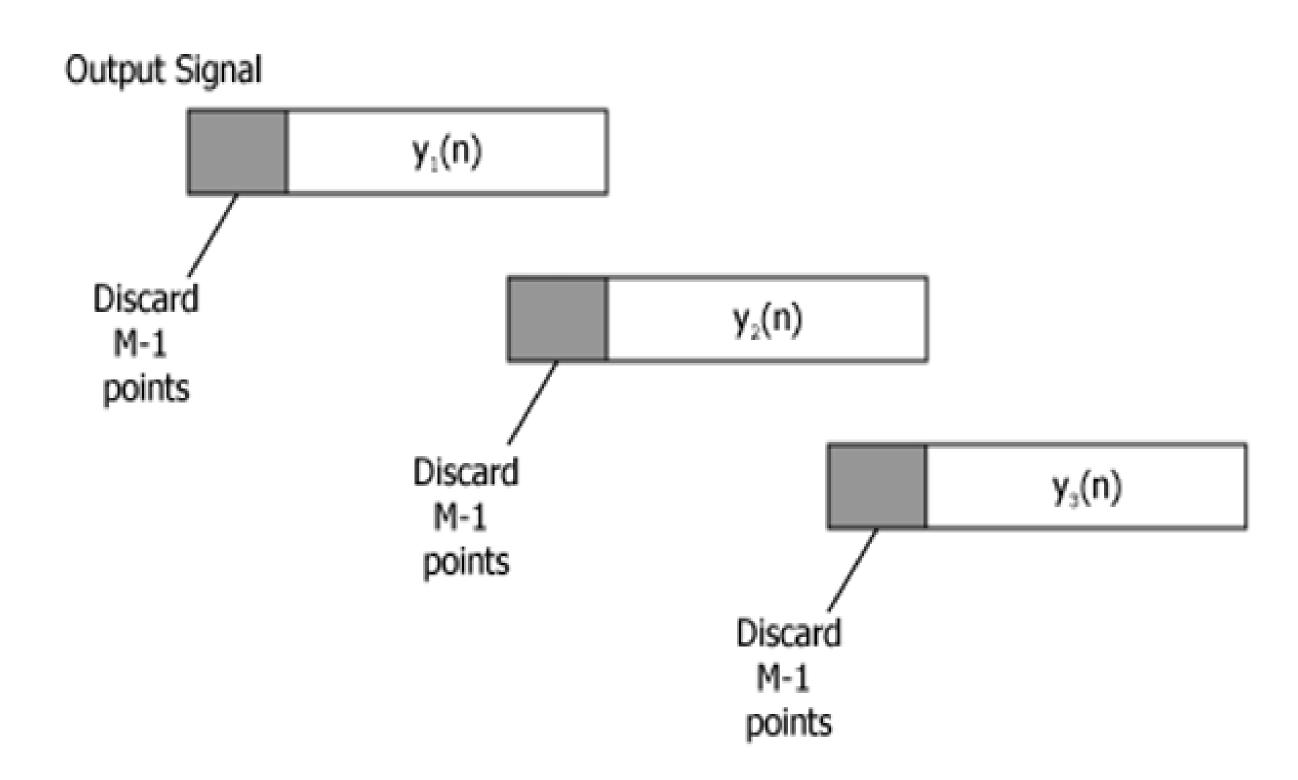
SECTIONED CONVOLUTION

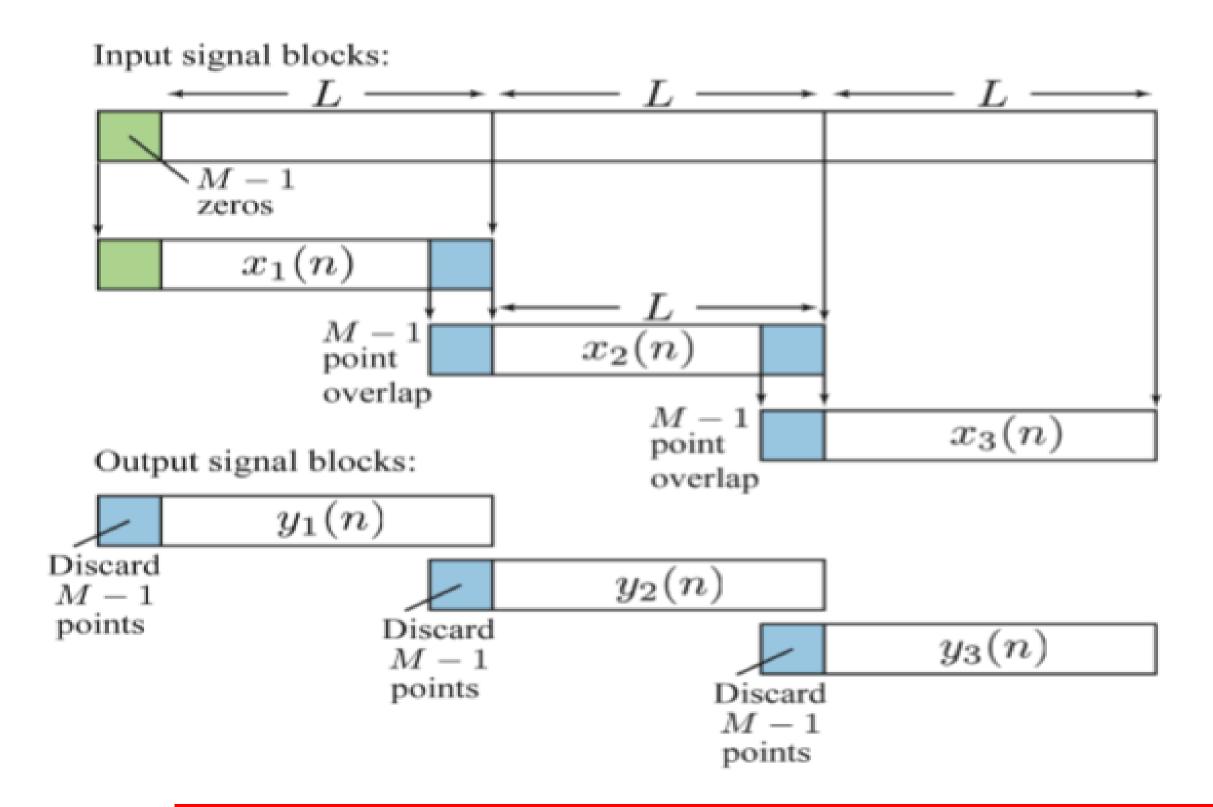
- In this technique the larger sequence is sectioned (or splitted) into the size of smaller sequence
- Then the linear convolution of each section of longer sequence and the smaller sequence is performed
- The output sequences obtained from the convolutions of all the sections are combined to get the overall output sequence

SECTIONED CONVOLUTION

- There are two methods of sectioned convolutions. They are
- Overlap add method
- Overlap save method







• Find the linear convolution $x(n) = \{1,2,3,4,4,3,2,1\}$ and $h(n) = \{-1,1\}$ using Overlap Save Method:

Find $y_1(n)$:

$$x_1(n) = \{1, 2, 3\}$$

 $h(n) = \{-1, 1, 0\}$

$$y_1(n) = x_1(n) \odot h(n)$$

circular convolution is done using Matrix Method

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1+3+0 \\ -2+1+0 \\ -3+2+0 \end{bmatrix}$$

$$= \left[\begin{array}{c} 2 \\ -1 \\ -1 \end{array} \right]$$

$$y_1(n) = [2, -1, -1]$$

Find $y_2(n)$:

$$x_2(n) = \{3, 4, 4\}$$

$$h(n) = \{-1, 1, 0\}$$

$$y_2(n) = x_2(n) \odot h(n)$$

$$\begin{bmatrix} 3 & 4 & 4 \\ 4 & 3 & 4 \\ 4 & 4 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -3+4+0 \\ -4+3+0 \\ -4+4+0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$y_2(n) = [1, -1, 0]$$

Find $y_3(n)$:

$$x_3(n) = \{4, 3, 2\}$$

$$h(n) = \{-1, 1, 0\}$$

$$y_3(n) = x_3(n) \odot h(n)$$

$$\begin{bmatrix} 4 & 2 & 3 \\ 3 & 4 & 2 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -4+2+0 \\ -3+4+0 \\ -2+3+0 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$y_3(n) = [-2, 1, 1]$$

$Find_{y_4}(n)$:

$$x_4(n) = \{2, 1, 0\}$$

$$h(n) = \{-1, 1, 0\}$$

$$y_4(n) = x_4(n) \odot h(n)$$

$$\begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2+0+0 \\ -1+2+0 \\ 0+1+0 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$y_4(n) = [-2, 1, 1]$$

Step 3: Find y(n):

Here, original h(n) length = 2.

So, 1 sample is overlapped, and 1 sample is discarded.

n	0	1	2	3	4	5	6	7	8	9
y _l (n)	2	-1	-1	2=			-			
y ₂ (n)			\times	-1	0					
y ₃ (n)					\nearrow	1	1			
y ₄ (n)		-						1	1	
	*	-1	-1	-1	0	1	1	1	1	-

indicates that the sample is discarded.

$$y(n) = {*, -1, -1, -1, 0, 1, 1, 1, 1}$$

DIFFERENCE B/W OVERLAP ADD & OVERLAP SAVE METHOD

S.No.	Overlap Add Method	Overlap Save Method
1		Circular convolution of each section of longer sequence with smaller sequence is performed
2	Zero padding is not required	Zero padding is required to convert input sequences to size of output sequence
3	The overlapped samples in output are added to get overall output	In the output the last N_2 -1 sampling (or) First N_2 -1 samples are discarded

APPLICATIONS

Communication Signal Processing

* To remove noise which are added during transmission can be removed using filter where the operation involved is convolution

ASSESSMENT

- 1. What is meant by sectioned Convolution.
- 2. List the methods involved to compute sectioned convolution.
- 3. Mention some applications of sectioned Convolution.
- 4. Find the linear convolution $x(n) = \{1,2,3,4,4,3,2,1\}$ and $h(n) = \{-1,1\}$ using Overlap Save Method
- 5. What is the difference between overlap add and overlap save method.

THANK YOU