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UNIT IV – FINITE VOLUME TECHNIQUES 

Introduction to Finite Volume Techniques 

This section describes the formulation and methodology of finite volume method to solve the 

governing equations on a computational domain. It also describes the cell centered and face 

centered approaches used for finite volume formulation. 

The finite volume formulation is based on the approximate solution of the integral form of the 

conservation equations. The problem domain is divided into a set of non-overlapping control 

volumes referred to as finite volumes, where the variable of interest is usually taken at the 

centroid of the finite volume. The finite volume is also referred to as a cell or element. 

The governing equations are integrated over each finite volume and interpolation profiles are 

assumed in order to describe the variation of the concerned variable of interest between the 

cell centroids. The resulting discretization equation expresses the conservation principle for 

the variable inside the finite volume. 

The governing differential equations discussed in this manual each have a dependent variable 

that obeys a generalized conservation principle. If the dependent variable (scalar or vector) is 

denoted by φ, the generic differential equation is: 
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where

 is the unit vector normal to the surface 

 is the boundary of the control volume

 is the convective flux of  across the boundary 

 is the diffusive flux of  across the boundary 

The integral conservation in the scalar transport equation applies to each control volume as well as the complete
solution domain thus satisfying the global conservation of quantities such as mass, momentum and energy. These
quantities can be evaluated as fluxes at the surfaces of each control volume.

In order to obtain an algebraic (discretised) equation for each control volume the surface and volume integrals are
approximated using quadrature formulae in terms of function values at the storage location. This may require values
of variable at points other than the computational nodes of the control volume. Values at these locations are
obtained using interpolation schemes.

The overall finite volume approach involves the following steps.

Figure 1. Finite Volume Approach

There are two common approaches to finite volume discretization.

Cell centered approach: The domain is defined by a suitable grid of finite volumes and the computational
nodes are assigned at the centroid of the control volumes.

Face/Node centered approach: The domain is first defined by a set of nodes and control volumes are
constructed around these nodes as cell centers such that the faces of the control volume lie between these
nodes.
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The cell centered approach and node centered approach have nearly the same accuracy and efficiency for most of
the cases which use a structured grid.

To illustrate how the conservation equations in CFD can be discretised using finite volume method an example
involving the steady transport of x-momentum in a uniform 2D rectangular grid can be considered:

Figure 2. Finite Volume Stencil Around Point P

A cell centered approach is employed with the points P, W, E, N, S representing the cell centers and the notations n,
e, s, w representing the faces of cell P. The notation N (n), E(e), S(s), W(w) represent the north, east, south and west
directions, respectively.

The velocity  is stored at the nodes N, E, S, W and it is represented as  ,  ,  ,  , respectively. The finite
volume approximation starts by integrating the x-momentum equation over the control volume P.
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This leads to:
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Evaluation of Source
Terms

The source terms can be approximated by evaluating them at cell centers and
multiplying them by the volume of the cell.
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In the example considered the pressure gradient at center of cell P can be
evaluated by interpolating the pressure values from surrounding nodes.
Other source terms can be evaluated similarly, interpolating where necessary
to estimate the cell center values.

Evaluation of
Diffusive Fluxes

The diffusive fluxes can be approximated as

The gradients of velocity at the cell faces (e, w, n, s) can be approximated
using central difference comprising of the cell center values. This results in
diffusive fluxes being represented as

The discretised equation which is second-order accurate takes the form

Evaluation of
Convective Fluxes

The convective fluxes can be approximated as

The discretised equation takes the form

where  ,  and so on are mass fluxes through the east, west, north and
south faces.

The values of  at cell faces need to be obtained using appropriate
interpolation schemes between the cell center values. A few examples of such
schemes are linear interpolation (CDS), quadratic upwind interpolation
(QUICK), total variation diminishing (TVD).

∬
V

dx dy ≈ ( )
P
Δx Δy

∂p

∂x

∂p

∂x

[∫ μ dy]
e

w
+ [∫ μ dx]

n

s
≈ [μ Δy]

e

w
+ [μ Δx]

n

s

∂u

∂x

∂u

∂y

∂u

∂x

∂u

∂y

[∫ μ dy]
e

w
+ [∫ μ dx]

n

s
≈ (μΔy)e − (μΔy)w

∂u

∂x

∂u

∂y

uE−uP

Δx

uP−uW

Δx

−(μΔy)n − (μΔy)s
uN−uP

Δy

uP−uS

Δy

aeuE + awuW + anuN + asuS − apuP

[∫ ρu2dy]
e

w
+ [∫ ρuvdx]

n

s
≈ [ρu2Δy]

e

w
+ [ρuvΔx]

n

s

ceue − cwuw + cnun − csus

ce cw

u


