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UNIT IV – FINITE VOLUME TECHNIQUES 

Cell-centered Formulation 

Cell Centered Formulation 

For a cell as shown in Fig. 4.5, the values of the dependent variables are stored in the center of 

the cell. These values do not necessarily have to be seen as nodal values, but can also be seen 

as mean values over the cell. Therefore, in the cell-centered method, for visualization purposes, 

often, after completion of the calculations, values are attributed to the vertices of the grid by 

taking a weighted mean of the values in adjacent cells. Further, the interpretation as mean 

values allows higher-order formulation, as we discuss in Sect. 4.6. First, we discuss the typical 

second-order accurate formulations. 

Using the control volume of Fig. 4.5, a semi-discretization of (4.1) is obtained By 

 

Inserting (4.3) into (4.2) gives 

Further, f and g have to be defined on the boundary of the volume. A mean value between 
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adjacent nodes looks to be the simplest choice, for example: 

 

 

Fig. 4.5 Cell-centred formulation 

Since the flux functions are non-linear functions of the dependent variables, an alternative for 

(4.5) is 

 

With (4.6) it means that the dependent variables are first averaged and that afterward flux 

vectors are calculated. This is not a popular choice, since it implies about twice as many flux 

evaluations as (4.5). Indeed, when in a structured quadrilateral grid, there are nx subdivisions 

in a longitudinal direction and ny subdivisions in a transversal direction, then there are nxny 

cells, but nx(ny + 1) + ny(nx + 1) cell faces. This does not imply that the work involved in 

(4.6) is twice as much as the work involved in (4.5). A lot of computational effort can be gained 

by remarking that a momentum flux is a mass flux multiplied by an average velocity, etc. 

Nevertheless, the definition (4.5) is the cheapest. Therefore, (4.5) is the only central flux 

definition used in the following (one-sided flux definitions are also possible, as discussed 

later). With the definition of the discrete fluxes f and g, the semi-discretization (4.4) is 

completed. It is now to be integrated in time. 

Lax Wendroff Time Stepping 

Since Lax-Wendroff time-stepping is a very classic explicit time integration method in the 

finite difference method, explained in previous chapters, we begin by discussing how this time-

stepping can be applied to a finite volume formulation. We first recall the principles of a Lax-

Wendroff method with the use of the one-dimensional scalar model equation. 

A Taylor series expansion to the second order gives 
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Combination of (4.8) and (4.9) gives 

The two-dimensional analog of (4.10) on the Euler equations (4.1) is 

 

Where A and B are the Jacobian matrices of the flux vectors: 

 

In the finite-difference method, a discretization of (4.10) or (4.5) is called a one-step Lax-

Wendroff method. As explained in previous chapters, a possible procedure is to expand the 

second-order derivatives in space in (4.10) or (4.5) and to replace these derivatives with central 

difference approximations. In principle, a finite volume formulation on (4.10) or (4.5) is 

possible since these equations take the form of a flux balance. The fluxes contain however 

derivatives. 

Since the definition 

of derivatives is not simple in the finite volume method, one-step methods are never used. The 

most popular two-step formulations, such as the Richtmyer variant and the MacCormack 

variant, can however be used without problems in the FVM. 

Further, in the one-step method, the primitive flux balances are lost while these are visible in 

the two-step formulations. Since the MacCormack variant was explained in previous chapters, 

we illustrate here how this variant can be formulated in finite volume form. 
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In the MacCormack variant of the Lax-Wendroff method, (4.8) is written as 

With (predictor) 

(4.12) can be written as (corrector) 

The discretization by MacCormack of (4.13) and (4.14) is 

 

Equations (4.15) and (4.16) form the forward-backward variant. The forward and backward 

discretizations can be interchanged. In the terminology of ordinary differential equations, the 

MacCormack method is a predictor-corrector method. 

The implementation of the MacCormack variant of the Lax-Wendroff method is rather 

straightforward. In the forward-backward formulation, in the predictor step in Fig. 4.5, the 

fluxes at the sides ab, bc, cd, and da are evaluated with function values in the nodes (i,j), (i+1, 

j), (i, j+1) and (i,j), respectively. In the corrector step, this is (i, j−1), (i,j), (i,j), and (i−1, j). 

At inflow and outflow boundaries, the FVM can be used as the FDM. This means that, in 

general, extrapolation formulas are used to define values in nodes outside the domain. For 

instance, for a subsonic inflow, it is common practice to extrapolate the Mach number from 

the flow field and to impose stagnation properties and flow direction. At a subsonic outflow, 

the reverse can be done, i.e. extrapolation of stagnation properties and flow direction and fixing 

of a Mach number. Very often, pressure is imposed at the outflow. 

At solid boundaries, the convective flux can be set to zero. This means that in the flux through 

a cell surface on a solid boundary, only the pressure comes in: 

 

The pressure at the boundary can be taken to be the pressure in the cell. Sometimes, as in the 
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FDM, an extrapolation of pressure is used. It is however not always easy to define extrapolation 

formulas on distorted or unstructured grids. 

 

Four geometrical variants in the choice of the biasing of the fluxes are possible. Figure 4.6 

shows schematically the possibilities for the predictor step. In 

 

Fig. 4.6 Possible variants of the biasing for flux functions in the predictor step of a 

MacCormack method 

 

Fig. 4.7 GAMM-channel test problem the corrector step, the biasing is inverted. In practice, 

the four possibilities are used alternatively. 

We illustrate now the cell-centered MacCormack scheme on the well-known GAMM-channel 

test problem for transonic flows. This problem is shown in Fig. 4.7, discretized with a 49×17 

grid. The result shown in Fig. 4.8 is however obtained on a once-refined grid, i.e. a 97×33 grid. 

The channel of Fig. 4.7 is almost straight except for a small circular perturbation on the lower 

boundary with height 4.2% of the chord. The result of Fig. 4.8 is obtained with the 

MacCormack method described above. Pressure is imposed at the outlet, corresponding to an 

isentropic 

Mach number of 0.84. As in the finite-difference method, to obtain this result, some artificial 
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viscosity is needed to stabilize the solution in the shock region (see discussion in previous 

chapters). This is done here in a rather primitive way by adding to each step a smoothing of 

form. 

 

Where μ is a very small coefficient. For the result in Fig. 4.8: μ = 0.001. This is enough to 

stabilize the shock. Of course, by increasing μ, the observed wiggles can be eliminated, but 

this increases the smearing of the shock. Therefore it is preferred to keep some of the wiggles 

in the solution. 

The CFL restriction for the time step in the MacCormack scheme is given by (with c the 

velocity of sound): 

 

Fig. 4.8 IsoMachlines obtained by cell-centered MacCormack scheme where 

 

 

Runge Kutta Time Stepping - Multi-Stage Time Stepping 

Runge-Kutta time stepping schemes for ordinary differential equations are unstable when 

applied to the semi-discretization (4.4) with the central flux (4.5): 

There is no contribution of the central node in the flux balance in (4.17) since the flux balance 

for a constant flux on a closed surface is zero. As a consequence, (4.17) is an exact analog of a 
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central type finite difference discretization. 

The instability of Runge-Kutta time stepping can be seen by considering a Fourier analysis on 

a central space discretization of the model equation (4.7) for the case of constant a = ∂f/∂u: 

Inserting 

 

 

 

Equation (4.19) has the form 

With 

 

Figure 4.9 shows the stability domain for λΔt for the Runge-Kutta second, third, and fourth-

order, time-integration methods. 

Since λ according to (4.20) is on the imaginary axis, the second-order Runge- Kutta method is 

unstable. Higher-order Runge-Kutta methods are marginally stable. 

Higher-order Runge-Kutta methods can be stabilized by introducing a small amount of 

artificial viscosity. For example, equation (4.18) can be modified to 
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Fig. 4.9 Stability regions in the complex plane for classic explicit Runge-Kutta methods 

 

The value of λ according to the previous analysis now becomes 

 

Since there is now a small negative real part in λ, higher order Runge-Kutta time stepping now 

becomes stable, according to Fig. 4.9, when subject to a CFL condition that restricts the time 

step. Note that a modification of equation (4.18) by adding a fourth-order derivative term 

instead of a second-order derivative term leads to a similar stabilization effect. 

The fourth-order method, with simplifications, is mostly used since it gives the best ratio of 

allowable time step to computational work per time step. A simplified fourth-order scheme can 

be written as 
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And where the superscript denotes the (intermediate) time level. 

Obviously (4.21) is not a classic fourth-order Runge-Kutta scheme. In a Runge-Kutta scheme, 

the fourth step is 

 

with the choice of coefficients 

The accuracy of the fourth-order Runge-Kutta scheme is fourth order in time. This is 

unnecessarily high since the space accuracy of the discretization is only second order. The 

simplification (4.21) has second-order accuracy in time for a non-linear equation, which is 

sufficient. The simplified multi-stage time-stepping (4.21) requires less storage than a classic 

Runge-Kutta time-stepping. Originally, Jameson used the classic Runge-Kutta method. The 

low storage modification, later introduced by Jameson, is nowadays universally used.  

The scheme (4.21) can be constructed by considering a Taylor expansion up to the fourth order. 

 

The following grouping defines (4.21): 
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The stability domain of the multi-stage time stepping is the same as that of the fourth-order 

Runge-Kutta scheme shown in Fig. 4.9. 

The artificial viscosity introduced by Jameson is a blend of a second-order and a fourth-order 

term. It is used in all steps of (4.21). 

To keep the calculation conservative, the added dissipative term is, for a structured 

quadrilateral grid: 

 

where 

 

With similar definitions of the other terms in (4.22). 

The coefficients of the second-order term ε(2) and the fourth-order term ε(4) are chosen in a 

self-adaptive way. 

As a detector of the smoothness of the flow field, for the definition of the coefficients in (4.23), 

Jameson uses 

 

and then defines 

 

 

By this definition, the second-order term is only significant in shock regions. In smooth regions 

of the flow, the second-order term has a very small coefficient and the fourth-order term 

dominates. The fourth-order term constitutes the so-called background dissipation. For an 

equal stabilization effect, it diffuses the solution less than a second-order term. Therefore it is 
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used in smooth regions of the flow. In shock regions, the fourth-order dissipation has to be 

switched off since it causes wiggles and the second-order dissipation is to be used to eliminate 

wiggles. 

Therefore the second-order dissipation is called the shock dissipation. 

At solid boundaries, the dissipative terms in (4.22) in the direction normal to the boundary are 

to be set equal to zero. In the foregoing definition of the dissipative terms (4.22, 4.23) the so-

called second-order and fourth-order terms only correspond to second-order derivatives and 

fourth-order derivatives on a smooth grid. 

However, the expressions (4.22, 4.23) do not have to be changed on an irregular grid. First, 

they are not meant to simulate a physical viscosity. Second, they are also meant to eliminate 

spurious modes, i.e. the non-physical solutions of the discretization. Figure 4.10 shows the 

perturbation patterns in fluxes, and as a consequence also independent variables, not detected 

by the central type flux balance for quadrilateral and triangular grids. 

Authors using Jameson‘s Runge-Kutta scheme often have their variant of the dissipative term. 

Also very often, the dissipative correction in the second to fourth step is taken to be the same 

as in the first step. 

A formulation of the artificial viscosity applicable to unstructured grids, which is a slight 

extension of the formulation given by Jameson and Mavriplis, is given hereafter. 

The time-step limit is calculated from (for CFL = 1) 

 

 

Fig. 4.10 Spurious modes for cell-centered central discretization where the subscript I denotes 
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the node, Vn is the normal velocity on an edge, obtained by 

averaging, c is the velocity of sound obtained similarly, and Δs is the length of the edge. Ωi is 

the volume and the summation is taken over all edges. 

The second-order smoothing operator is then, similar to (4.23), obtained by a sum of terms: 

 

Where the subscript j denotes the surrounding nodes. The weight function εi,j is obtained from 

where νi and νj are pressure switches. The pressure switch νi is defined by 

 

 

 

 

With Δt the time step obtained from (4.24) for CFL = 1. 

To define the fourth-order smoothing, first un-weighted pseudo-Laplacians are constructed by 

The fourth-order term is then given by a sum of terms: 

Where 

 

 

Where Fi,j is the physical flux and Di,j is the dissipation term, given by 
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The resulting flux (4.26) usually is called a numerical flux. 

 

 


