

(An Autonomous Institution) Coimbatore-35

DEPARTMENT OF MATHEMATICS

UNIT-III-SOLUTIONS OF EQUATIONS

SOLUTION OF LINEAR SYSTEM

There are two types of methods to solve línear algebraiz equations

- (a) Gauss Elimination method
- (b) Gauss Jordon Method
- (ii) Inducet Method (or) Iterative Method !
- (a) Gauss Jacobie Method
- (b) Gauss seidel method

Gauss Elimination Method:

Let us consider the 'n' linear equations

$$a_n x_1 + a_n x_2 + \cdots + a_n x_n = b_1$$
 Ship is considered by any state of the second of the second

$$a_2, x_1 + a_{22}x_{2+} - \cdots + a_{2n}x_n = b_2$$
 $b_2 = b_1$
 $b_2 = b_2$
 $b_3 = b_3$

and + and at + - - + ann an = pu

where any and be are known constants and ais, are unknowns

The above egn. is equivalent to Ax=B

where
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

(An Autonomous Institution) Coimbatore-35

DEPARTMENT OF MATHEMATICS

UNIT-III-SOLUTIONS OF EQUATIONS

Now our aim is to reduce the augmented matrix [A,B] to upper triangular matrin.

Augmented matrin is

$$[A,B] = \begin{pmatrix} a_{11} & a_{12} & c_{1n} & b_{1} \\ a_{21} & a_{22} & a_{2n} & b_{2} \\ c_{1n} & c_{1n2} & c_{1nn} & b_{1} \end{pmatrix}$$

which is reduced to upper triangular matrix, as,

$$\begin{pmatrix} a_{11} & a_{12} & a_{1n} & b_1 \\ c & b_{2n} & c_2 \\ \vdots & \vdots & \vdots \\ c & c & c & c \end{pmatrix}$$

By back substitution method we get the values jes xn, xn, ... x2, x,

1) Solve the system of columns by Gaussian elimination method.

(An Autonomous Institution)
Coimbatore—35

DEPARTMENT OF MATHEMATICS

UNIT-III-SOLUTIONS OF EQUATIONS

The given system is equivalent to AX=B

$$\begin{pmatrix} 10 & -2 & 3 \\ 2 & 10 & -5 \\ 3 & -4 & 10 \end{pmatrix} \begin{pmatrix} \chi \\ y \\ 3 \end{pmatrix} = \begin{pmatrix} 23 \\ -33 \\ 41 \end{pmatrix}$$

Now
$$[A,B] = \begin{bmatrix} 10-2 & 3 & 23 \\ 2 & 10-5 & -33 \\ 3-4 & 10 & 41 \end{bmatrix}$$

Let us reduce augmented matrix FA,BJ to upper triangular matrix.

Step 1: Fin the first row, change 2 & 3 row with sow 1

Step 2: Fix 18 2 now, change 3 now with 2nd now

$$\sim \begin{bmatrix}
10 & -2 & 3 & 23 \\
0 & 104 & -5.6 & -37.6 \\
0 & 0. & 7.26 & 21.80
\end{bmatrix}
R_3 \Leftrightarrow R_3 - \left(-\frac{3.4}{10.4}\right)R_2$$

which is an upper tetangular matrin.

(An Autonomous Institution) Coimbatore-35

DEPARTMENT OF MATHEMATICS

UNIT-III-SOLUTIONS OF EQUATIONS

Slep 3! Back Substitution.

$$10\pi - 2y + 33 = 23 \implies 21 = 1$$
 checking: $10\pi - 2y$

Hence soln & n=1, y=-2, 3=3

@ Solve The system of equations by Gauss-elimination method.

$$2_1 + 7n_2 + 21_3 + 21_4 = 12$$

The gn. system is equivalent to Ax=B

$$\begin{pmatrix}
5 & 1 & 1 & 1 \\
1 & 7 & 1 & 1 \\
1 & 1 & 6 & 1 \\
1 & 1 & 1 & 4
\end{pmatrix}
\begin{pmatrix}
31 \\
32 \\
33 \\
34
\end{pmatrix} = \begin{pmatrix} 4 \\
12 \\
-5 \\
-6
\end{pmatrix}$$

(An Autonomous Institution) Coimbatore-35

DEPARTMENT OF MATHEMATICS

UNIT-III-SOLUTIONS OF EQUATIONS

Let us reduce augmented matrix to upper triangulas matrin.

Step1. Fix row 1, change 2, 3, 4 row with row 1

Step 2: I'm stow 122, change 3 & 4 now with now 2.

step3. Fix now 1,283, Change 4th 2000 with 2003

Steply: Back Substitution:

Step 4: Back Substitution:

NE get 3.61
$$\frac{7}{4} = -7.23 \implies 2(4 = -2.00)$$
 $5.70 \%_{3} + 0.70 \%_{4} = -7.11 \implies 2(3 = -1.00)$
 $6.8 \%_{4} + 0.8 \%_{3} + 0.8 \%_{4} = (1.2 \implies 2) = 2$
 $5\%_{1} + 2\%_{2} + 2\%_{3} + 2\%_{4} = 4 \implies 21 = 1$