

Coimbatore-35 An Autonomous Institution

Department of Information Technology

19CST202 – Database Management System II B.Tech. AIML/ IV SEMESTER

UNIT I : INTRODUCTION

Topic 1 : Purpose of Database System - Views of data – Data models

Purpose of Database System - Views of data – Data models, Database Management system - Three-schema architecture of DBMS, Components of DBMS. Entity –Relationship Model - Conceptual data modeling - motivation, entities, entity types, attributes, relationships, relationship types, E/R diagram notations, Examples

DBMS contains information about a particular enterprise

- Collection of interrelated data
- Set of programs to access the data
- An environment that is both *convenient* and *efficient* to use

Database systems are used to manage collections of data that are:

Highly valuable Relatively large Accessed by multiple users and applications, often at the same time.

A modern database system is a complex software system whose task is to manage a large, complex collection of data.

Databases touch all aspects of our lives

A.Aruna / AP / IT / SEM 4 / DBMS

Database Applications Examples

• Enterprise Information

- Sales: customers, products, purchases
- Accounting: payments, receipts, assets
- Human Resources: Information about employees, salaries, payroll taxes.
- Manufacturing: management of production, inventory, orders, supply chain.

• Banking and finance

- customer information, accounts, loans, and banking transactions.
- Credit card transactions
- Finance: sales and purchases of financial instruments (e.g., stocks and bonds; storing real-time market data
- Universities: registration, grades

- Airlines: reservations, schedules
- Telecommunication: records of calls, texts, and data usage, generating monthly bills, maintaining balances on prepaid calling cards
- Web-based services
 - Online retailers: order tracking, customized recommendations
 - Online advertisements
- Document databases
- Navigation systems: For maintaining the locations of varies places of interest along with the exact routes of roads, train systems, buses, etc.

Purpose of Database Systems

- **Data redundancy and inconsistency**: data is stored in multiple file formats resulting induplication of information in different files
- Difficulty in accessing data
 - Need to write a new program to carry out each new task
- Data isolation
 - Multiple files and formats
- Integrity problems
 - Integrity constraints (e.g., account balance > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Purpose of Database Systems

Atomicity of updates

- Failures may leave database in an inconsistent state with partial updates carried out
- Example: Transfer of funds from one account to another should either complete or not happen at all

Concurrent access by multiple users

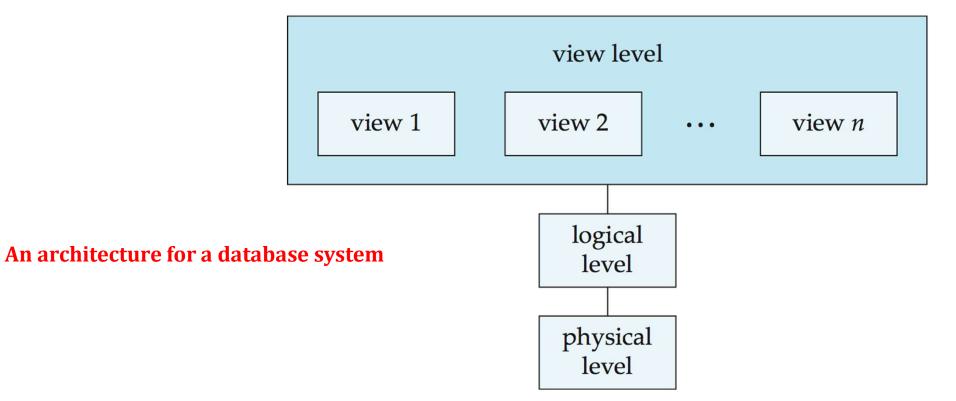
- Concurrent access needed for performance
- Uncontrolled concurrent accesses can lead to inconsistencies
 - Ex: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time

Security problems

• Hard to provide user access to some, but not all, data

Levels of Abstraction

- **Physical level:** describes how a record (e.g., instructor) is stored.
- Logical level: describes data stored in database, and the relationships among the data.


type instructor = record

ID : string; name : string; dept_name : string; salary : integer; end;

• View level: application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes

A.Aruna / AP / IT / SEM 4 / DBMS

A.Aruna / AP / IT / SEM 4 / DBMS

28-01-2025

Instances and Schemas

- Similar to types and variables in programming languages
- Logical Schema the overall logical structure of the database
 - Example: The database consists of information about a set of customers and accounts in a bank and the relationship between them
 - Analogous to type information of a variable in a program
- Physical schema the overall physical structure of the database

A.Aruna / AP / IT / SEM 4 / DBMS

9/14

28-01-2025

Instances and Schemas

- Instance the actual content of the database at a particular point in time
 - Analogous to the value of a variable
- **Physical Data Independence** the ability to modify the physical schema without changing the logical schema
 - Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

Data Models

- A collection of tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
- Relational model
- Entity-Relationship data model (mainly for database design)
- Object-based data models (Object-oriented and Object-relational)
- Semistructured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model

Relational Model

ID

22222

• All the data is stored in various tables.

INSTITUTIONS

• Example of tabular data in the relational model

		Columns		
ID	name	dept_name	salary	
22222	Einstein	Physics	95000 • Rows	
12121	Wu	Finance	90000 /	
32343	El Said	History	60000	
45565	Katz	Comp. Sci.	75000 /	
98345	Kim	Elec. Eng.	80000 /	
76766	Crick	Biology	72000 /	
10101	Srinivasan	Comp. Sci.	65000 /	
58583	Califieri	History	62000 /	
83821	Brandt	Comp. Sci.	92000 /	
15151	Mozart	Music	40000 /	
33456	Gold	Physics	87000 /	
76543	Singh	Finance	80000 4	

12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

name

Einstein

dept_name

Physics

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

(b) The *department* table

(a) The *instructor* table

12/14

salary

95000

TEXT BOOKS

Abraham <u>Silberschatz</u>, Henry F. <u>Korth</u>, S. <u>Sudharshan</u>, —Database System Concepts *y* , Sixth Edition, Tata McGraw Hill, 2011.

RamezElmasri, Shamkant B. Navathe, —Fundamentals of Database Systems J, Sixth Edition, Pearson Education, 2011.

Tiwari, Shashank. Professional NoSQL. John Wiley& Sons, 2011

REFERENCES

C.J.Date, A.Kannan, S.Swamynathan, —An Introduction to Database Systems, Eighth Edition, Pearson Education, 2006. Raghu Ramakrishnan, —Database Management Systems & Fourth Edition, McGraw-Hill College Publications, 2015 <u>G.K.Gupta,"Database</u> Management Systems, Tata McGraw Hill, 2011.

S.K.Singh, "Database Systems Concepts, Design and Applications", First Edition, Pearson Education, 2009.

A.Aruna / AP / IT / SEM 6/ 19ITE305 Big Data Analytics/ Unit 1

28-01-2025