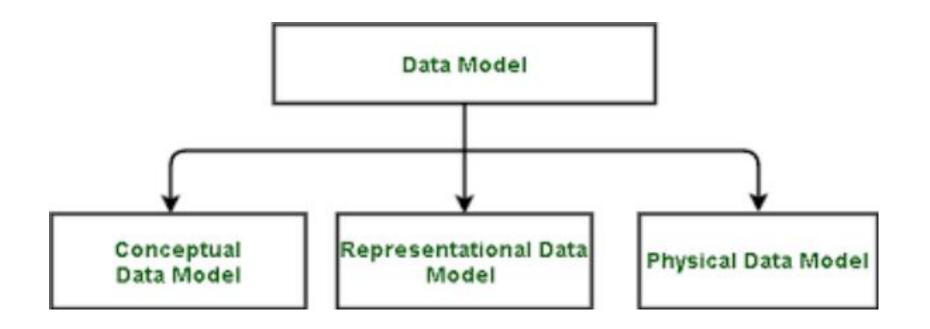


Unit I - Introduction

Purpose of Database System - Views of data – Data models, Database Management
system - Three-schema architecture of DBMS, Components of DBMS. Entity
–Relationship Model - Conceptual data modelling - motivation, entities, entity
types, attributes, relationships, relationship types, E/R diagram notations, Examples

- **Data Modelling** process of creating a data model for the data to be stored in a database.
- Two Types
 - ER
 - Relational etc.,



Design Phases

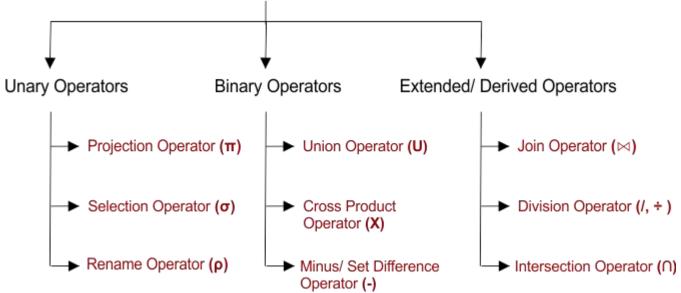
- Initial phase -- characterize fully the data needs of the prospective database users.
- Second phase -- choosing a data model
- Final Phase -- Moving from an abstract data model to the implementation of the database
 - Logical Design Deciding on the database schema.
 - Redundancy
 - Incompleteness
 - Physical Design Deciding on the physical layout of the database

Types of Relational Models

Conceptual data modelling

- Conceptual Data Model
 - understand the needs or requirements of the database
 - Requirement-gathering process i.e. before the Database Designers start making a particular database.
 - Popular Model Entity Relationship Model

Entity-Relationship Model(ER Model): It is a high-level data model which is used to define the data and the relationships between them. It is basically a conceptual design of any database which is easy to design the view of data.


Conceptual data modelling

- **1.<u>Entity</u>:** An entity is referred to as a real-world object. It can be a name, place, object, class, etc. These are represented by a **rectangle** in an ER Diagram.
- 2.<u>Attributes</u>: An attribute can be defined as the description of the entity. These are represented by Eclipse in an ER Diagram. It can be Age, Roll Number, or Marks for a Student.
- **3.**<u>Relationship</u>: Relationships are used to define relations among different entities. <u>Diamonds and Rhombus</u> are used to show Relationships.

REAL STRUTIONS

Representational Data Model

- Used to represent only the logical part of the database and does not represent the physical structure of the database.
- Relational Algebra or Relational Calculus Relational Algebra Operators

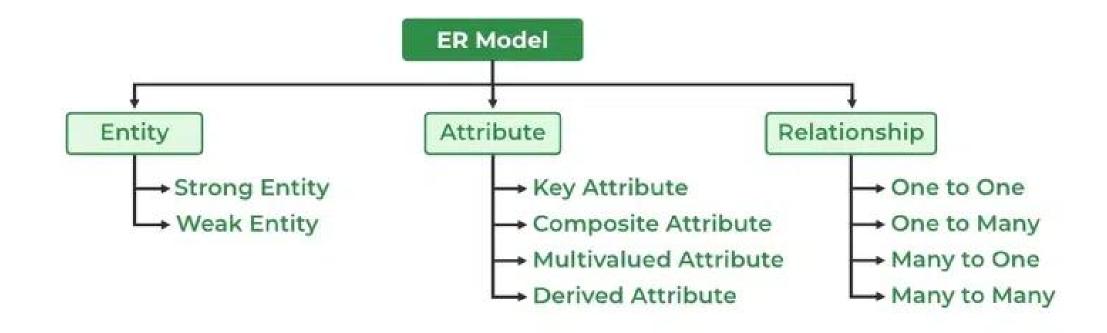
Physical Data Model

- Used to practically implement Relational Data Model
- Structured Query Language (SQL) is used to practically implement Relational Algebra.

Design Approaches

- Entity Relationship Model
 - Models an enterprise as a collection of *entities* and *relationships*
 - Entity: a "thing" or "object"
 - Described by a set of *attributes*
 - Relationship: an association among several entities
 - Represented diagrammatically by an *entity-relationship diagram*

- Makes easy to convert into relations (tables).
- require no technical knowledge and no hardware support.



Symbols used in ER Model

Figures	Symbols	Represents
Rectangle		Entities in ER Model
Ellipse	\bigcirc	Attributes in ER Model
Diamond	\diamond	Relationships among Entities
Line		Attributes to Entities and Entity Sets with Other Relationship Types
Double Ellipse		Multi-Valued Attributes
Double Rectangle		Weak Entity

Component of ER Model

Motivations

- **Conceptually it is very simple:** ER model is very simple because if we know relationship between entities and attributes, then we can easily draw an ER diagram.
- **Better visual representation:** ER model is a diagrammatic representation of any logical structure of database. By seeing ER diagram, we can easily understand relationship among entities and relationship.
- Effective communication tool: It is an effective communication tool for database designer.
- **Highly integrated with relational model:** ER model can be easily converted into relational model by simply converting ER model into tables.
- Easy conversion to any data model: ER model can be easily converted into another data model like hierarchical data model, network data model
 A.Aruna / AP / IT / SEM 4 / DBMS

