T L ——

/

Unit I - Relational Model

Relational Data Model - keys, referential integrity and foreign keys, Relational
Algebra - SQL fundamentals- Introduction, data definition in SQL, table, key and
foreign key definitions, update behaviors -Intermediate SQL-Advanced SQL
features -Embedded SQL- Dynamic SQL, CASE Studies- Oracle: Database Design and

.uerying Tools; SQL Variations and Extensions

The History of SOL Standards

-
History
THE FIRST VERSION
OF THE STANDARD
/ \
1986 1989
SQL-86 SQL-89
FROM
WHERE
GROUP BY
HAVING
INSERT
UPDATE
DELETE

CREATE TABLE
CREATE VIEW

v

)

LearnSOL

e COM

S, 3/13/2025

R History

3/14

History of Oracle Database Versions

Dracl_e 19¢ ==—=fp Automated testing of query plans, Automatic indexing

=
H

| Dra::l_e 18¢c sy Polymorphic Table Functions, Active Directory Integration
@@ml_l]racl_e 12¢ sss=fp Cloud plugging

2007 | Qralple 118 =gy Manageability, diagnosability and availability
[0 Oracle 10g ===y Grid computing
2001 Oracle 9i sy Oracle RAC

| 1999 Oracle 8i =@ Internet computing
. 1997 Q_r__a_:_:__le 8 ===l Objects and partitioning

ml Dran:_le 7 PL/SQL stored program

| 1988 Oracle 6 ooy disk /0, row locking, scalability and backup and
Oracle5 et client/server computing and distributed d:

q;alﬁ!e 4 gy multiversion read consistency
1933 Oracle 3 =sp first relational database to ru
| 1979 Oracle? smep SQL based RDBMS

| 1978 Oracle 1 memeed- Never officially re

A.Aruna / AP /IT / SEM 4 / DBMS - ' 3/13/2025

INSHTUT/IGNS

sal
COMMANDS
i
o = = vo = 8
DDL DML TCL DCL
o SRR S 4 Mo e T
T . ¥ T e T | e T
Create Select Commit Grant
o S G fo S ¢ M
| ey N | —
Alter Insert Rollback Revoke
Nk e att B!
o #5500 ¥ [8
Drop Update SavePoint
. o S o S
L A
Delete
S

AAruna / AP /IT / SEM 4 / DBMS

4/14

SQL Parts

[DML - Data Manipulation Language J

4(DDL - Data Definition Language

)7

4(DCL - Data Control Language

)7

4(TCL - Transaction Control Language)—

4(DQL - Data Query Language

)7

3/13/2025

5/14

Data Definition Language

* The SQL data-definition language (DDL) allows the specification of information

about relations, including:

* The schema for each relation.

The type of values associated with each attribute.

The Integrity constraints

The set of indices to be maintained for each relation.

Security and authorization information for each relation.

The physical storage structure of each relation on disk.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

—

Domain Types in SQL

* char(n). Fixed length character string, with user-specified length n.

e varchar(n). Variable length character strings, with user-specified maximum
length n.

* int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer domain
type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits,
with d digits to the right of decimal point. (ex., numeric(3,1), allows 44.5 to be
stores exactly, but not 444.5 or 0.32)

* real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

* float(n). Floating point number, with user-specified precision of at least n
digits.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

T

Create Table Construct ..

* An SQL relation is defined using the create table command:

create table r
(Al D]J Az Dz, reny An Dn,
(integrity-constraint,),

LLLY)

(integrity-constraint,))

* ris the name of the relation

create table instructor (

ID char(5),

name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

e each A, is an attribute name in the schema of relation r

* D.is the data type of values in the domain of attribute 4,

AAruna / AP /IT / SEM 4 / DBMS

3/13/2025

[-

8/14

E—

s Integrity Constraints in Create Table

* Types of integrity constraints
e primary key (4, .., 4,,)
* foreign key (4, ..., A,) references r
* not null

* SQL prevents any update to the database that violates an integrity

constraint.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

e

mm——_____ el

S S

s Integrity Constraints in Create Table

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary Kkey (ID),
foreign key (dept_name) references department),

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

10/14

ST oS Few More Relation Definitions

create table student (
ID varchar(5),
name varchar(20) not null,
dept_ name varchar(20),
tot cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

= "4 =
:o “ %‘z s s 11/14

ST e Few More Relation Definitions

* create table takes (

ID varchar(5),

course_id varchar(8),

sec_id varchar(8),

semester varchar(6),

year numeric(4,0),

grade varchar(2),
primary Key (ID, course_id, sec_id, semester, year)
foreign key (/D) references student,

foreign key (course_id, sec_id, semester, year) references section);

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

3S.5
| - 12/14
T ST Few More Relation Definitions
 create table course (

course_id varchar(8),

title varchar(50),

dept_ name varchar(20),

credits numeric(2,0),

primary Kkey (course_id),

foreign key (dept_name) references department);

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

| Updates to tables.

* Insert
* insert into instructor values ('10211’, 'Smith’, 'Biology’, 66000);

Delete
* Remove all tuples from the student relation
* delete from student

Drop Table
* drop table r

Alter

e alter tableradd A4 D

e where 4 is the name of the attribute to be added to relation r and D is the
domain of A.

 All exiting tuples in the relation are assigned null as the value for the new
attribute.

* alter table r drop A

* where A is the name of an attribute of relation r
* Dropping of attributes not supported by many databases.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

14/14

T e Basic Query Structure

* A typical SQL query has the form:
select4,,4,, .., A,

fromry,r, ..,r,
where P

A;represents an attribute

* R.represents a relation
* Pis a predicate.

* The result of an SQL query is a relation.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

'

The select Clause "

* The select clause lists the attributes desired in the result of a query
* corresponds to the projection operation of the relational algebra

* Example: find the names of all instructors:
select name
from instructor

* NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)

* E.g., Name = NAME = name
* Some people use upper case wherever we use bold font.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

-

16/14

The select Clause (Cont.)

* SQL allows duplicates in relations as well as in query results.

* To force the elimination of duplicates, insert the keyword distinct
after select.

* Find the department names of all instructors, and remove duplicates

select distinct dept_name
from instructor

* The keyword all specifies that duplicates should not be removed.

select all dept_name
from instructor

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

—

The select Clause (Cont.})""

* An asterisk in the select clause denotes “all attributes”

select * from instructor

* An attribute can be a literal with no from clause

select '437"
* Results is a table with one column and a single row with value “437"

* Can give the column a name using:
select '437" as FOO

 An attribute can be a literal with from clause

select ‘A’ from instructor

* Result is a table with one column and N rows (number of tuples in the
instructors table), each row with value “A”

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

T ek

L Rcw -3 The select Clause (Cont.) 16714

* The select clause can contain arithmetic expressions involving the
operation, +, -, *, and /, and operating on constants or attributes of tuples.

* The query:
select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation,

except that the value of the attribute salary is divided by 12.

* Can rename “salary/12” using the as clause:
select ID, name, salary/12 as monthly_salary

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

The where Clause”"

The where clause specifies conditions that the result must satisfy
* Corresponds to the selection predicate of the relational algebra.

 To find all instructors in Comp. Sci. dept

select name
from instructor
where dept_name = 'Comp. Sci.

* SQL allows the use of the logical connectives and, or, and not

* The operands of the logical connectives can be expressions involving the comparison operators <, <=,
>, >=, =, and <>.

« Comparisons can be applied to results of arithmetic expressions

 To find all instructors in Comp. Sci. dept with salary > 70000

select name
from instructor
where dept_name = 'Comp. Sci.' and salary > 70000

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

20/14

The from Clause

INSTTTUZIONS;

* The from clause lists the relations involved in the query
* Corresponds to the Cartesian product operation of the relational algebra.
* Find the Cartesian product instructor X teaches
select *
from instructor, teaches
» generates every possible instructor - teaches pair, with all attributes from both relations.
* For common attributes (e.g., ID), the attributes in the resulting table are renamed using the relation

name (e.g., instructor.ID)

 Cartesian product not very useful directly, but useful combined with where-clause condition (selection

operation in relational algebra).
AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

Assessment

* Find the names of all instructors who have taught some course
and the course_id

» select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

* Find the names of all instructors in the Art department who
have taught some course and the course_id

» select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID
and instructor. dept_ name = Art’

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

p—

22/14

The Rename Operation

* The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

* Find the names of all instructors who have a higher salary than
some instructor in '‘Comp. Sci'.

e select distinct Thame
from instructor as T instructor as S
where Tsalary > S.salary and S.dept_name = 'Comp. Sci.’

* Keyword as is optional and may be omitted
instructor as T = instructor T

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

23/14

String Operations

* SQL includes a string-matching operator for comparisons on character strings. The operator like uses

patterns that are described using two special characters:
» percent (%). The % character matches any substring.

* underscore (_). The _ character matches any character.
* Find the names of all instructors whose name includes the substring “dar”.

select name
from instructor

where name like '%dar%'
* Match the string “100%”
like '100 \%' escape '\’

/ipp'ma}'g]a@llgg%%swe use backslash () as the escape character.

A.Aruna 3/13/2025

String Operations (Cont.}"

hitps.//www.geeksforgeeks.org/sql-string-functions/
* Patterns are case sensitive.

* Pattern matching examples:
* 'Intro%' matches any string beginning with “Intro”.
* '%Comp%' matches any string containing “Comp” as a substring.

* '___"matches any string of exactly three characters.

* '___9%' matches any string of at least three characters.

* SQL supports a variety of string operations such as
* concatenation (using “||")
* converting from upper to lower case (and vice versa)

* finding string length, extracting substrings, etc.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

25/14

s Ordering the Display of Tuples

INSTITU TIRNS;

 Listin alphabetic order the names of all instructors

select distinct name
from instructor

order by name
* We may specify desc for descending order or asc for ascending order, for each
attribute; ascending order is the default.

* Example: order by name desc

* Can sort on multiple attributes

* Example: order by dept_name, name

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

..

Where Clause Predicates”

INSTITU TIRNS;

e SQL includes a between comparison operator
« Example: Find the names of all instructors with salary between $90,000 and $100,000 (that is, >
$90,000 and < $100,000)

* select name

from instructor
where salary between 90000 and 100000
* Tuple comparison

» select name, course_id
from instructor, teaches

where (instructor.ID, dept_ name) = (teaches.ID, 'Biology');

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

Set Operations

* Find courses that ran in Fall 2017 or in Spring 2018

(select course_id from section where sem = "Fall' and year = 2017)
union

(select course_id from section where sem = 'Spring' and year = 2018)

* Find courses that ran in Fall 2017 and in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)

intersect

(select course_id from section where sem = 'Spring' and year = 2018)

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

¢ OFn S '_'4 P :
s s Set Operations

INSHTU TJENS;

Find courses that ran in Fall 2017 but not in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)

except

(select course_id from section where sem = 'Spring' and year = 2018)

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

= "4 .
27 s s 29/14

INSTITULONS, Set Operations (Cont.)

* Set operations union, intersect, and except

* Each of the above operations automatically eliminates duplicates

 To retain all duplicates use the
e union all,
 intersect all

* except all.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

Null Valueggm

* Itis possible for tuples to have a null value, denoted by null, for some of their attributes

null signifies an unknown value or that a value does not exist.

The result of any arithmetic expression involving null is null

« Example: 5+ null returns null

The predicate is null can be used to check for null values.
* Example: Find all instructors whose salary is null.
select name

from instructor

where salary is null

The predicate is not null succeeds if the value on which it is applied is not null.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

* These functions operate on the multiset of values of a column of a relation,

and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values

count: number of values

AAruna / AP /IT / SEM 4 / DBMS

31/14

Aggregate Functions

3/13/2025

32/14

s Aggregate Functions Examples

INSTITU TIRNS;

* Find the average salary of instructors in the Computer Science department

» select avg (salary)
from instructor
where dept_name="Comp. Sci.;
* Find the total number of instructors who teach a course in the Spring 2018 semester

 select count (distinct /D)
from teaches
where semester = 'Spring' and year = 2018;

* Find the number of tuples in the course relation

« select count (*)

from course;

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

@ s s Aggregate Functions - Group By

INSHTU TJENS;

* Find the average salary of instructors in each department

* select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

34/14

Aggregate Functions - Having Clause

* Find the names and average salaries of all departments whose average
salary is greater than 42000

select dept_name, avg (salary) as avg_salary
from instructor

group by dept name

having avg (salary) > 42000;

* Note: predicates in the having clause are applied after the formation
of groups whereas predicates in the where clause are applied before
forming groups

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

.35/14

Nested Subqueries

* SQL provides a mechanism for the nesting of subqueries. A subquery is a select-from-where expression
that is nested within another query.

* The nesting can be done in the following SQL query

select4,, A, ..., A,
fromry,r,, .. r,
where P

as follows:
* From clause: r; can be replaced by any valid subquery
 Where clause: P can be replaced with an expression of the form:
B <operation> (subquery)
B is an attribute and <operation> to be defined later.
* Select clause:

A; can be replaced be a subquery that generates a single value.

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

36/14

INSIHTUTIRNS
* Find courses offered in Fall 2017 and in Spring 2018

Set Membership

select distinct course id
from section
where semester = 'Fall' and year= 2017 and
course_id in (select course id
from section
where semester = 'Spring' and year= 2018);

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

37/14

* Find courses offered in Fall 2017 and in Spring 2018

Set Membership

select distinct course id
from section
where semester = 'Fall' and year= 2017 and
course _id in (select course id
from section

+ Find courses ofliereaseriestessm pprirgland year=
201 8) select distinct course_id

from section
where semester = 'Fall' and year= 2017 and
course_id not in (select course id
from section
where semester = 'Spring' and year= 2018);

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

38/14

> Set Membership (Cont.)
INSTHTU TJRNS;

* Name all instructors whose name is neither “Mozart” nor Einstein”

select distinct name
from instructor
where name not in ('Mozart', 'Einstein’)

* Find the total number of (distinct) students who have taken course sections
taught by the instructor with ID 10101

select count (distinct /D)

from takes

where (course_id, sec_id, semester, year) in
(select course _id, sec id, semester, year
from teaches
where teaches.ID= 10101);

* Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

:

Set Comparison - “some” Clause

S

INSTITUTIONG
* Find names of instructors with salary greater than that of
some (at least one) instructor in the Biology department.
select distinct T.name

from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology’;

* Same query psing > some clause

from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology');

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

S

INSHTU TJENS;

AAruna / AP /IT / SEM 4 / DBMS

(5 < some

(5 <some

(5 = some

(5 # some

0

N[O (NS N(O |||

(= some) =in
However, (# some) 7-é not in

J— e

Definition of “some” Clause

 F<comp>some r<> 1t e r such that (F <comp>t)
Where <comp> can be: <, <, >, =, #

) = true
(read: 5 < some tuple in the relation)

) = false

) = true

) = true (since 0 # 5)

40/14

3/13/2025

41/14

Set Comparison - “all” Clause

INSIHTUTIENS
* Find the names of all instructors whose salary is greater than the salary of all

instructors in the Biology department.

select name
from instructor
where salary > all (select salary
from instructor
where dept name = 'Biology");

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

INSHTU TJENS;

AAruna / AP /IT / SEM 4 / DBMS

42/14

* F<comp>allr< Veer (F<comp>t) pefinition of “all” Clause

0
(5<all | 5|)="false
6
6
(5<all [10Q]|)=true
4
(5=all| 5 |)="false
4
(5#all| 6 |)=true (since 5 # 4 and 5 # 6)

(= all) = not in
However, (= all) # in

3/13/2025

43/14

WSTIT O LONE Test for Empty Relations

* The exists construct returns the value true if the argument subquery is
nonempty.

e exists re r2gd

e notexistsre r=4¢

AAruna / AP /IT / SEM 4 / DBMS

3/13/2025

s 44/14

Use of “exists” Clause
INSIHTUT/RNS

* Yet another way of specifying the query “Find all courses taught in both the Fall
2017 semester and in the Spring 2018 semester”

select course_id
from section as S
where semester = 'Fall' and year = 2017 and
exists (select*
from sectionas T
where semester = 'Spring' and year= 2018
and S.course_id = T.course_id);

* Correlation name - variable S in the outer query

* Correlated subquery - the inner query

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

45/14

Use of “not exists” Clause

INSIHTUTIRNS
* Find all students who have taken all courses offered in the Biology
department.

select distinct S./ID, S.name
from student as S
where not exists ((select course id
from course
where dept _name = 'Biology')
except
(select T.course id
from takesas T
where S.ID = T.ID));

First nested query lists all courses offered in Biology
Second nested query lists all courses a particular student took

* NotethatX-Y=0 < XcY

* Note: Cannot write this query using = all and its variants

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

s Test for Absence of Duplicate Tuples -
INSTITUT QNS

* The unique construct tests whether a subquery has any duplicate tuples in
its result.

* The unique construct evaluates to “true” if a given subquery contains no
duplicates .

* Find all courses that were offered at most once in 2017

select T.course_id
from courseas T
where unique (select R.course_id
from section as R
where T.course_id= R.course_id
and R.year = 2017);

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

47/14

Subqueries in the Form Clause

INSIHTUTIRNS
* SQL allows a subquery expression to be used in the from clause

* Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name)

where avg_salary > 42000;

* Note that we do not need to use the having clause

* Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)
from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

48/14

s With Clause
INSHTUT/IGNS
* The with clause provides a way of defining a temporary relation whose

definition is available only to the query in which the with clause occurs.

* Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)
select department.name
from department, max_budget
where department.budget = max_budget.value;

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

S

INSHTU TJENS;

Complex Queries using With Clause

* Find all departments where the total salary is greater than the average of the total salary at all
departments

with dept total (dept _name, value) as
(select dept _name, sum(salary)
from instructor
group by dept name),
dept total avg(value) as
(select avg(value)
from dept _total)
select dept name
from dept total, dept total avg
where dept total.value > dept total avg.value;

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

Scalar Subquery*

INSHTUT/IGNS
* Scalar subquery is one which is used where a single value is expected

 List all departments along with the number of instructors in each department

select dept_name,
(select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors
from department;

* Runtime error if subquery returns more than one result tuple

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

—

Modifiction of the Database

51/14

INSHTUT/IGNS
* Deletion of tuples from a given relation.

 Insertion of new tuples into a given relation

« Updating of values in some tuples in a given relation

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

Deletion -

S

INSIHTUT/RNS
* Delete all instructors

delete from instructor

* Delete all instructors from the Finance department
delete from instructor
where dept_name= 'Finance’;

* Delete all tuples in the instructor relation for those instructors associated with a
department located in the Watson building.

delete from instructor
where dept name in (select dept name
from department
where building = "Watson');

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

Deletion (Cont.}""

* Delete all instructors whose salary is less than the average salary of instructors

delete from instructor
where salary < (select avg (salary)
from instructor);

* Problem: as we delete tuples from instructor, the average salary changes
e Solution used in SQL:
1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or retesting the
tuples)

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

Insertion 54/14

INSTTTUZIONS;

e Add a new tuple to course

insert into course
values ('CS-437', 'Database Systems', 'Comp. Sci., 4);

* or equivalently

insert into course (course_id, title, dept_name, credits)
values ('CS-437', 'Database Systems’, 'Comp. Sci., 4);

* Add a new tuple to student with tot_creds set to null

insert into student
values ('3003’, 'Green’, 'Finance', null);

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

e

Insertion (Cont.) _—

* Make each student in the Music department who has earned more than 144 credit
hours an instructor in the Music department with a salary of $18,000.

insert into instructor
select ID, name, dept_name, 18000
from student
where dept_name = 'Music' and total_cred > 144;

* The select from where statement is evaluated fully before any of its results are
inserted into the relation.

Otherwise queries like
insert into tablel select * from tablel

would cause problem

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

Updates

56/14

* Give a 5% salary raise to all instructors

update instructor
set salary = salary * 1.05

* Give a 5% salary raise to those instructors who €arn less than 70000
update instructor
set salary = salary * 1.05
where salary < 70000;

* Give a 5% salary raise to instructors whose salary is less than average

update instructor
set salary = salary * 1.05
where salary < (select avg (salary)
from instructor);

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

Updates (Cont.)

57/14

* Increase salaries of instructors whose salary is over $100,000 by 3%, and all
others by a 5%

* Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <=100000;

* The order is important
* Can be done better using the case statement (next slide)

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

>) ————
| o 58/14
e s s Case Statement for Conditional Updates

INSHTU TJENS;

* Same query as before but with case statement

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

59/14

5 Updates with Scalar Subqueries
INSHTULIONS]

* Recompute and update tot_creds value for all students

update student S
set tot_cred = (select sum(credits)
from takes, course
where takes.course_id = course.course_id and
S.ID= takes.ID.and
takes.grade <> 'F' and
takes.grade is not null);

* Sets tot_creds to null for students who have not taken any course
* Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

INSHTU TJENS;

AAruna / AP /IT / SEM 4 / DBMS 3/13/2025

