
Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 2 Page 1 of 9

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &
Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT II – Relational Model
Relational Data Model - keys, referential integrity and foreign keys, Relational Algebra -

SQL fundamentals- Introduction, data definition in SQL, table, key and foreign key

definitions, update behaviors-Views, Triggers, Joins, Constraints, Stored Procedure-

Intermediate SQL-Advanced SQL features -Embedded SQL- Dynamic SQL

Views
A view in SQL is a saved SQL query that acts as a virtual table. It can fetch data from one
or more tables and present it in a customized format, allowing developers to:

 Simplify Complex Queries: Encapsulate complex joins and conditions into a
single object.

 Enhance Security: Restrict access to specific columns or rows.
 Present Data Flexibly: Provide tailored data views for different users.

Syntax
CREATE VIEW view_name AS SELECT column1, column2…..FROM table_name
WHERE condition;

Multiple Table

CREATE VIEWMarksView AS
SELECT StudentDetails.NAME, StudentDetails.ADDRESS, StudentMarks.MARKS
FROM StudentDetails, StudentMarks
WHERE StudentDetails.NAME = StudentMarks.NAME;

Rules

 The SELECT statement which is used to create the view should not include GROUP
BY clause or ORDER BY clause.

 The SELECT statement should not have the DISTINCT keyword.
 The View should have all NOT NULL values.
 The view should not be created using nested queries or complex queries.
 The view should be created from a single table. If the view is created using

multiple tables then we will not be allowed to update the view.
Triggers
SQL triggers are a critical feature in database management systems (DBMS) that
provide automatic execution of a set of SQL statements when specific database events,
such as INSERT, UPDATE, or DELETE operations, occur. Triggers are commonly used to
maintain data integrity, track changes, and enforce business rules automatically,
without needing manual input.

https://www.geeksforgeeks.org/sql-order-by/
https://www.geeksforgeeks.org/mysql-distinct-clause/

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 2 Page 2 of 9

A trigger is a stored procedure in a database that automatically invokes whenever a

special event in the database occurs. By using SQL triggers, developers can automate

tasks, ensure data consistency, and keep accurate records of database activities.

Example: a trigger can be invoked when a row is inserted into a specified table or when

specific table columns are updated.

Syntax:
create trigger [trigger_name]
[before | after]
{insert | update | delete}
on [table_name]
FOR EACH ROW
BEGIN
END;

Types

1. DDL Triggers

CREATE TRIGGER prevent_table_creation
ON DATABASE
FOR CREATE_TABLE, ALTER_TABLE, DROP_TABLE
AS
BEGIN
PRINT 'you can not create, drop and alter table in this database';
ROLLBACK;

END;

2. DML Triggers

CREATE TRIGGER prevent_update
ON students
FOR UPDATE
AS
BEGIN
PRINT 'You can not insert, update and delete this table i';
ROLLBACK;

END;

3. Logon Triggers

CREATE TRIGGER track_logon
ON LOGON
AS
BEGIN
PRINT 'A new user has logged in.';

END;

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 2 Page 3 of 9

Example

An aggregate function is a function that performs a calculation on a set of values, and
returns a single value.
Aggregate functions are often used with the GROUP BY clause of the SELECT statement.
The GROUP BY clause splits the result-set into groups of values and the aggregate
function can be used to return a single value for each group.
The most commonly used SQL aggregate functions are:

 MIN() - returns the smallest value within the selected column
 MAX() - returns the largest value within the selected column
 COUNT() - returns the number of rows in a set
 SUM() - returns the total sum of a numerical column
 AVG() - returns the average value of a numerical column

Joins

A JOIN clause is used to combine rows from two or more tables, based on a related
column between them.

Syntax

SELECT column_list

FROM table1

JOIN table2 ON table1.column = table2.column;

Example

Order Table

Customers Table

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 2 Page 4 of 9

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate
FROM Orders
INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

Types

 (INNER) JOIN: Returns records that have matching values in both tables

 LEFT (OUTER) JOIN: Returns all records from the left table, and the matched
records from the right table

 RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched
records from the left table

 FULL (OUTER) JOIN: Returns all records when there is a match in either left or
right table

Constraints

Constraints can be specified when the table is created with the CREATE

TABLE statement, or after the table is created with the ALTER TABLE statement.

It may table or column level

Syntax

CREATE TABLE table_name (

column1 datatype constraint,

column2 datatype constraint,

column3 datatype constraint,

....

);

Types

The following constraints are commonly used in SQL:

 NOT NULL - Ensures that a column cannot have a NULL value

 UNIQUE - Ensures that all values in a column are different

 PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely identifies

each row in a table

 FOREIGN KEY - Prevents actions that would destroy links between tables

 CHECK - Ensures that the values in a column satisfies a specific condition

 DEFAULT - Sets a default value for a column if no value is specified

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 2 Page 5 of 9

 CREATE INDEX - Used to create and retrieve data from the database very quickly

NOTNULL

CREATE TABLE Persons (

ID int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255) NOT NULL,

Age int

);

ALTER TABLE Persons

ALTER COLUMN Age int NOT NULL;

UNIQUE

 The UNIQUE constraint ensures that all values in a column are different.

 Both the UNIQUE and PRIMARY KEY constraints provide a guarantee for

uniqueness for a column or set of columns.

 A PRIMARY KEY constraint automatically has a UNIQUE constraint.

CREATE TABLE Persons (

ID int NOT NULL UNIQUE,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Age int

);

PRIMARY KEY

CREATE TABLE Persons (

ID int NOT NULL PRIMARY KEY,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Age int

);

FOREIGN KEY

CREATE TABLE Orders (

OrderID int NOT NULL,

OrderNumber int NOT NULL,

PersonID int,

PRIMARY KEY (OrderID),

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 2 Page 6 of 9

CONSTRAINT FK_PersonOrder FOREIGN KEY (PersonID)

REFERENCES Persons(PersonID)

);

CHECK

CREATE TABLE Persons (

ID int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Age int CHECK (Age>=18)

);

CREATE TABLE Persons (

ID int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Age int,

City varchar(255),

CONSTRAINT CHK_Person CHECK (Age>=18 AND City='Sandnes')

);

DEFAULT

CREATE TABLE Persons (

ID int NOT NULL,

LastName varchar(255) NOT NULL,

FirstName varchar(255),

Age int,

City varchar(255) DEFAULT 'Sandnes'

);

CREATE TABLE Orders (

ID int NOT NULL,

OrderNumber int NOT NULL,

OrderDate date DEFAULT GETDATE()

);

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 2 Page 7 of 9

Stored Procedure

A stored procedure is a prepared SQL code that you can save, so the code can be reused

over and over again.

Syntax

CREATE PROCEDURE procedure_name

AS

sql_statement

GO;

EXEC procedure_name;

Example

CREATE PROCEDURE SelectAllCustomers

AS

SELECT * FROM Customers

GO;

EXEC SelectAllCustomers;

Examples of Aggregate Functions

a) SUM() - Total Salary of Employees

sql

CopyEdit

SELECT SUM(Salary) AS TotalSalary

FROM Employees;

Output:

TotalSalary

5000000

b) AVG() - Average Salary of Employees

sql

CopyEdit

SELECT AVG(Salary) AS AverageSalary

FROM Employees;

Output:

AverageSalary

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 2 Page 8 of 9

AverageSalary

50000

c) COUNT() - Number of Employees in a Department

sql

CopyEdit

SELECT DepartmentID, COUNT(*) AS EmployeeCount

FROM Employees

GROUP BY DepartmentID;

Output:

DepartmentID EmployeeCount

101 10

102 15

d) MAX() and MIN() - Highest and Lowest Salary

sql

CopyEdit

SELECT MAX(Salary) AS HighestSalary, MIN(Salary) AS LowestSalary

FROM Employees;

Output:

HighestSalary LowestSalary

120000 25000

3. Using Aggregate Functions with GROUP BY

The GROUP BY clause groups data before applying aggregate functions.

Example: Average Salary Per Department

sql

CopyEdit

SELECT DepartmentID, AVG(Salary) AS AvgSalary

FROM Employees

GROUP BY DepartmentID;

Output:

DepartmentID AvgSalary

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 2 Page 9 of 9

DepartmentID AvgSalary

101 55000

102 47000

4. Using Aggregate Functions with HAVING Clause

The HAVING clause filters grouped data after applying an aggregate function.

Example: Departments with More Than 5 Employees

sql

CopyEdit

SELECT DepartmentID, COUNT(*) AS EmployeeCount

FROM Employees

GROUP BY DepartmentID

HAVING COUNT(*) > 5;

Output:

DepartmentID EmployeeCount

101 10

