
Unit I – Relational Model
Relational Data Model - keys, referential integrity and foreign keys, Relational

Algebra - SQL fundamentals- Introduction, data definition in SQL, table, key and

foreign key definitions, update behaviors-Intermediate SQL- Advanced SQL features

-Embedded SQL- Dynamic SQL, CASE Studies- Oracle: Database Design and

Querying Tools; SQL Variations and Extensions

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

1/33

• Not all queries can be expressed in SQL, since SQL does not provide the full

expressive power of a general-purpose language.

• Non-declarative actions -such as printing a report, interacting with a user, or

sending the results of a query to a graphical user interface -- cannot be done

from within SQL.

A database programmer must have access to a general-purpose
programming language for at least two reasons

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

2/33

• A general-purpose program -- can connect to and communicate with a database

server using a collection of functions

• Embedded SQL -- provides a means by which a program can interact with a

database server.

• The SQL statements are translated at compile time into function calls.

• At runtime, these function calls connect to the database using an API that

provides dynamic SQL facilities.

There are two approaches to accessing SQL from a general-purpose programming
language

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

3/33

Java Database Connectivity

• JDBC or Java Database Connectivity is a Java API to connect and execute the

query with the database.

• Specification from Sun Microsystems

• The classes and interfaces of JDBC allow the application to send requests made

by users to the specified database.

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

4/33

Purpose of JDBC

• Interacting with a database requires efficient database connectivity, which can

be achieved by using the ODBC(Open database connectivity) driver

• Driver is used with JDBC to interact or communicate with various kinds of

databases such as Oracle, MS Access, Mysql, and SQL server database.

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

1. Java Applications
2. Java Applets
3. Java Servlets
4. Java ServerPages (JSPs)
5. Enterprise JavaBeans (EJBs).

5/33

Architecture

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

6/33

Components of JDBC
1. JDBC API: It provides various methods and interfaces for easy communication

with the database. - java.sql.*;

2. JDBC Driver manager: It loads a database-specific driver in an application to

establish a connection with a database.

3. JDBC Test suite: It is used to test the operation(such as insertion, deletion,

updation) being performed by JDBC Drivers.

4. JDBC-ODBC Bridge Drivers: It connects database drivers to the database. This

bridge translates the JDBC method call to the ODBC function call.

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

7/33

Components of JDBC

• Driver Manager − This class manages a list of database drivers. Matches connection requests

from the java application with the proper database driver using communication sub protocol.

• Driver − This interface handles the communications with the database server.

• Connection − This interface with all methods for contacting a database.

• Statement − You use objects created from this interface to submit the SQL statements to the

database.

• ResultSet − These objects hold data retrieved from a database after you execute an SQL query

using Statement objects.

• SQLException - −This class handles any errors that occur in a database application.
3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

8/33

JDBC Drivers

There are 4 types of JDBC drivers:

1.Type-1 driver or JDBC-ODBC bridge driver

2.Type-2 driver or Native-API driver

3.Type-3 driver or Network Protocol driver

4.Type-4 driver or Thin driver

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

9/33

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

Types of JDBC Architecture(2-tier and 3-
tier)

3/13/2025

10/5710/33

Interfaces of JDBC API

• Driver interface

• Connection interface

• Statement interface

• PreparedStatement interface

• CallableStatement interface

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

• ResultSet interface

• ResultSetMetaData interface

• DatabaseMetaData interface

• RowSet interface

11/33

Popular Classes in JDBC API

• DriverManager class

• Blob class - Binary

• Clob class - Character

• Types class

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

12/33

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

public static void JDBCexample(String dbid, String userid, String passwd)
 {

 try {
 Class.forName ("oracle.jdbc.driver.OracleDriver");
 Connection conn = DriverManager.getConnection(

 "jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);
 Statement stmt = conn.createStatement();
 … Do Actual Work ….
 stmt.close();
 conn.close();
 }
 catch (SQLException sqle) {
 System.out.println("SQLException : " + sqle);
 }

 }

NOTE: Class.forName is not
required from JDBC 4
onwards.

13/33

Simple Application

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

package com.sa.jdbc;

import java.sql.*;

public class JDBCDemo {

 public static void main(String args[])
 throws SQLException, ClassNotFoundException
 {
 String driverClassName
 = "sun.jdbc.odbc.JdbcOdbcDriver";
 String url = "jdbc:odbc:XE";
 String username = "scott";
 String password = "tiger";
 String query
 = "insert into students values(109, 'bhatt')";

// Load driver class
 Class.forName(driverClassName);

 // Obtain a connection
 Connection con = DriverManager.getConnection(
 url, username, password);

 // Obtain a statement
 Statement st = con.createStatement();

 // Execute the query
 int count = st.executeUpdate(query);
 System.out.println(
 "number of rows affected by this query= "
 + count);

 // Closing the connection as per the
 // requirement with connection is completed
 con.close();
 }
}

14/33

Update to database

try {

 stmt.executeUpdate(

 "insert into instructor values('77987', 'Kim', 'Physics', 98000)");

} catch (SQLException sqle)

{

 System.out.println("Could not insert tuple. " + sqle);

}

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

15/33

Execute query and fetch and print
results

ResultSet rset = stmt.executeQuery("select dept_name, avg (salary) from

instructor group by dept_name");

while (rset.next()) {

 System.out.println(rset.getString("dept_name") + " " + rset.getFloat(2));

}

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

16/33

• The SQL standard defines embeddings of SQL in a variety of programming languages such as C,

C++, Java, Fortran, and PL/1,

• The basic form of these languages follows that of the System R embedding of SQL into PL/1.

• EXEC SQL statement is used in the host language to identify embedded SQL request to the

preprocessor

 EXEC SQL <embedded SQL statement >;

 Note: this varies by language:

• In some languages, like COBOL, the semicolon is replaced with END-EXEC

• In Java embedding uses # SQL { …. };
3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

17/33

• Before executing any SQL statements, the program must first connect to the

database. This is done using:

 EXEC-SQL connect to server user user-name using password;

 Here, server identifies the server to which a connection is to be established.

• Variables used as above must be declared within DECLARE section,

EXEC-SQL BEGIN DECLARE SECTION}

 int credit-amount ;

 EXEC-SQL END DECLARE SECTION;
3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

18/33

• To write an embedded SQL query, we use the

 declare c cursor for <SQL query>

• Example:

 EXEC SQL

 declare c cursor for

 select ID, name

 from student

 where tot_cred > :credit_amount

 END_EXEC 3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

19/33

• The open statement EXEC SQL open c ;

 This statement causes the database system to execute the query and to save

the results within a temporary relation. The query uses the value of the host-

language variable credit-amount at the time the open statement is executed.

• The fetch statement causes the values of one tuple in the query result to be

placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

20/33

• The close statement causes the database system to delete the temporary

relation that holds the result of the query.

EXEC SQL close c ;

 Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

21/33

• Embedded SQL expressions for database modification (update, insert, and delete)

• Can update tuples fetched by cursor by declaring that the cursor is for update

 EXEC SQL

 declare c cursor for

 select *

 from instructor

 where dept_name = 'Music'

 for update

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

update instructor
 set salary = salary + 1000
 where current of c

22/33

• Theniterate through the tuples by performing fetch operations on the cursor

(as illustrated earlier), and after fetching each tuple we execute the following

code:

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

23/33

Difference between Embedded and
Dynamic SQL

• Static or Embedded SQL are SQL statements in an application that

do not change at runtime and, therefore, can be hard-coded into the

application.

• Dynamic SQL is SQL statements that are constructed at runtime; for

example, the application may allow users to enter their own queries.

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

24/33

Functions and Procedure

• The function program has a block of code that performs some

specific tasks or functions.

• Particular set of instructions or commands along known as a

procedure.

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

25/33

Function

CREATE [OR REPLACE] FUNCTION function_name
[(parameter_name type [, …])]

// this statement is must for functions
RETURN return_datatype
{IS | AS}

BEGIN
 // program code

[EXCEPTION
 exception_section;

END [function_name];

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

create function MultiplyNumbers(@int1 as int,@int2 as int)
As
BEGIN
Return (@int1 * @int2)
end

26/33

Procedure

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

CREATE or REPLACE PROCEDURE name(parameters)
IS
variables;
BEGIN
//statements;
END;

CREATE or REPLACE PROCEDURE INC_SAL(eno IN NUMBER, up_sal OUT NUMBER)
IS
BEGIN
UPDATE emp_table SET salary = salary+1000 WHERE emp_no = eno;
COMMIT;
SELECT sal INTO up_sal FROM emp_table WHERE emp_no = eno;
END;

27/33

Trigger
• A trigger is a stored procedure in database which automatically invokes

whenever a special event in the database occurs.

• For example, a trigger can be invoked when a row is inserted into a

specified table or when certain table columns are being updated.

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

28/33

Trigger Syntax

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

create trigger [trigger_name]

[before | after]

{insert | update | delete}

on [table_name]

[for each row]

[trigger_body]

29/33

Trigger Example

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

30/33

Trigger Example

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

create trigger stud_marks

before

INSERT

on Student

for each row

set Student.total = Student.subj1 + Student.subj2 +

Student.subj3, Student.per = Student.total * 60 / 100;

31/33

Trigger Example

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

32/33

3/13/2025A.Aruna / AP / IT / SEM 4 / DBMS

33/33

