1/33

UnitI - Relational Model

Relational Data Model - keys, referential integrity and foreign keys, Relational
Algebra - SQL fundamentals- Introduction, data definition in SQL, table, key and
foreign key definitions, update behaviors-Intermediate SQL- Advanced SQL features
-Embedded SQL- Dynamic SQL, CASE Studies- Oracle: Database Design and
Querying Tools; SQL Variations and Extensions . & “

Bine=c =

A.Aruna / AP /IT / SEM 4 / DBMS

-

Accessing SQL from a Programming
Language

A database programmer must have access to a general-purpose
programming language for at least two reasons

* Not all queries can be expressed in SQL, since SQL does not provide the full

expressive power of a general-purpose language.

* Non-declarative actions -such as printing a report, interacting with a user, or
sending the results of a query to a graphical user interface -- cannot be done

from within SQL.

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

3/33

There are two approaches to accessing SQL from a general-purpose programming
language

* A general-purpose program -- can connect to and communicate with a database

server using a collection of functions
* Embedded SQL -- provides a means by which a program can interact with a
database server.
 The SQL statements are translated at compile time into function calls.

* At runtime, these function calls connect to the database using an API that

provides dynamic SQL facilities.

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

4/33

LTI Java Database Connectivity
* JDBC or Java Database Connectivity is a Java API to connect and execute the
query with the database.
* Specification from Sun Microsystems

* The classes and interfaces of JDBC allow the application to send requests made

by users to the specified database.

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

Purpose of JDBC

INSTITUT/RNS]

* Interacting with a database requires efficient database connectivity, which

can be achieved by using the ODBC(Open database connectivity) driver

* Driver is used with JDBC to interact or communicate with various kinds of

databases such as Oracle, MS Access, Mysql, and SQL server database.

Java Applications

Java Applets

Java Servlets

Java ServerPages (JSPs)
Enterprise JavaBeans (E]Bs).

U1 WD

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

6/33

Architecture

Application
(Java servlet,applet,etc)

}

[JDBC API

'

[JDBC Driver Manager

JDBC Drivers

|
|
= /= =

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

7/33

), Components of JDBC

1. JDBC API: It provides various methods and interfaces for easy communication

with the database. - java.sql.*;

2. JDBC Driver manager: It loads a database-specific driver in an application to

establish a connection with a database.

3. JDBC Test suite: It is used to test the operation(such as insertion, deletion,

updation) being performed by JDBC Drivers.

4. JDBC-ODBC Bridge Drivers: It connects database drivers to the database. This
bridge translates the JDBC method call to the ODBC function call.

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

Components of]DB@\

Driver Manager — This class manages a list of database drivers. Matches connection requests

from the java application with the proper database driver using communication sub protocol.
* Driver - This interface handles the communications with the database server.
« Connection - This interface with all methods for contacting a database.

e Statement - You use objects created from this interface to submit the SQL statements to the

database.

* ResultSet - These objects hold data retrieved from a database after you execute an SQL query

using Statement objects.

* SQLException - —This class handles any errors that occur in a database application.

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

INSTITUT/RNS]

There are 4 types of JDBC drivers:

1.Type-1 driver or JDBC-ODBC bridge driver
2.Type-2 driver or Native-API driver
3.Type-3 driver or Network Protocol driver

4. Type-4 driver or Thin driver

A.Aruna / AP /IT / SEM 4 / DBMS

9/33

JDBC Drivers

05-03-2023

N

10/33

Types of JDBC Architecture(2-tier and 3) -
tier

Three-Tier Architecture
Two-Tier Architecture

Client Machine

i : (Gun
Client Machine [Ea@v@AppuCations e S
: HTTR,RMl,etc
|]]
FE R EEE R R =W g PFPesswoeswiew s weal
. DBMS Proprietary | Server Machine
: Protocol 4
R S ——— & B e § a9 el e
DBMS Proprietary |
Database Server Protocol

nnnnnnnnnnnnnnn

Database Server

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

INSTITUT/RNS]

Driver interface

Connection interface
Statement interface
PreparedStatement interface

CallableStatement interface

A.Aruna /AP /IT / SEM 4 / DBMS

ResultSet interface

ResultSetMetaData interface

DatabaseMetaData interface

RowSet interface

11/33

Interfaces of JDBC API

JDBC Interfaces

Driver
Manager

!

Driver

!

(-

Connection

[Statement

¢

Prepared
Statement

]

\\\{ ResultSet]///

05-03-2023

DriverManager class

Blob class - Binary

Clob class - Character

Types class

A.Aruna / AP /IT / SEM 4 / DBMS

<

12/33

Popular Classes in JDBC API

Java Database Connectivity

Register driver
Get connection

Create statement

Execute query

Close connection

05-03-2023

13/33

public static void JDBCexample(String dbid, String userid, String passwd)

{

try {
Class.forName ("oracle.jdbc.driver.OracleDriver");

Connection conn = DriverManager.getConnection(
] "jdbc:oracle:thin:@db.yale.edu:2000:univdb”, userid, passwd);
NOTE: Class.forName is not

required from JDBC 4 Statement stmt = conn.createStatement();
onwards. ... Do Actual Work
stmt.close();
conn.close();
}
catch (SQLException sqle) {
System.out.println("SQLException: " + sqle);

}

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

package com.sa.jdbc;

import java.sql.*;
public class JDBCDemo {

public static void main(String args|[])
throws SQLException, ClassNotFoundException
{
String driverClassName
= "sun.jdbc.odbc.JdbcOdbcDriver";
String url = "jdbc:odbc:XE";
String username = "scott";
String password = "tiger";
String query
= "insert into students values(109, 'bhatt’)";

A.Aruna / AP /IT / SEM 4 / DBMS }

}

Simple Application

// Load driver class

Class.forName(driverClassName);

// Obtain a connection
Connection con = DriverManager.getConnection(
url, username, password);

// Obtain a statement
Statement st = con.createStatement();

// Execute the query
int count = st.executeUpdate(query);
System.out.println(
"number of rows affected by this query="
+ count);

// Closing the connection as per the
// requirement with connection is completed
con.close();

05-03-2023

15/33

U Update to database

try {

stmt.executeUpdate(

"insert into instructor values('77987', 'Kim', 'Physics’, 98000)");
} catch (SQLException sqle)

{

System.out.printin("Could not insert tuple. " + sqle);

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

16/33

Execute query and fetch and print
results
ResultSet rset = stmt.executeQuery("select dept_name, avg (salary) from
instructor group by dept_name");
while (rset.next()) {
System.out.println(rset.getString("dept_name") + " " + rset.getFloat(2));

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

Embedded SQL

ne SQL standard defines embeddings of SQL in a variety of programming languages such as C,

C++, Java, Fortran, and PL/1,
* The basic form of these languages follows that of the System R embedding of SQL into PL/1.

« EXEC SQL statement is used in the host language to identify embedded SQL request to the

preprocessor
EXEC SQL <embedded SQL statement >;

Note: this varies by language:
* In some languages, like COBOL, the semicolon is replaced with END-EXEC

* In Java embedding uses # SQL{.... };

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

Embedded SQL (Cont.)

INSTITUTONS

* Before executing any SQL statements, the program must first connect to the

database. This is done using:
EXEC-SQL connect to server user user-name using password,
Here, server identifies the server to which a connection is to be established.
e Variables used as above must be declared within DECLARE section,
EXEC-SQL BEGIN DECLARE SECTION}
int credit-amount;

EXEC-SQL END DECLARE SECTION;

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

Embedded SQL (Cont.)

INSTITUT/RNS]

* To write an embedded SQL query, we use the
declare c cursor for <SQL query>

* Example:
EXEC SQL

declare c cursor for
select ID, name
from student

where tot_cred > :credit amount

D EXEC 05-03-2023

A.Aruna /AP /IT /SEM 4 / DBMS—

Embedded SQL (Cont.)

* The open statement EXEC SQL open c;

This statement causes the database system to execute the query and to save
the results within a temporary relation. The query uses the value of the host-

language variable credit-amount at the time the open statement is executed.

* The fetch statement causes the values of one tuple in the query result to be

placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

21/33

INSTITUT/RNS]

Embedded SQL (Cont.)

* The close statement causes the database system to delete the temporary

relation that holds the result of the query.
EXEC SQL close c;

Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

Updates Through Embedded SQL

INSTITUTONS

 Embedded SQL expressions for database modification (update, insert, and delete)

* Can update tuples fetched by cursor by declaring that the cursor is for update

EXEC SQL
declare c cursor for update instructor
set salary = salary + 1000
select *

where current of ¢
from instructor

where dept_name = 'Music'

for update

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

* Theniterate through the tuples by performing fetch operations on the

cursor (as illustrated earlier), and after fetching each tuple we execute the

following code:

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

24/33

gt Difference between Embedded and
Dynamic SQL

e Static or Embedded SQL are SQL statements in an application that
do not change at runtime and, therefore, can be hard-coded into the

application.

 Dynamic SQL is SQL statements that are constructed at runtime; for

example, the application may allow users to enter their own queries.

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

25/33

INSTITUT/RNS]

Functions and Procedure

* The function program has a block of code that performs some

specific tasks or functions.

 Particular set of instructions or commands along known as a

procedure.

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

Function*”

INSTITUT/RNS]

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name type |[, ...])]

// this statement is must for functions
RETURN return_datatype

IS | AS
Us14s) create function MultiplyNumbers(@int1 as int,@int2 as int)
BEGIN As
// program code BEGIN
Return (@int1l * @int2)
[EXCEPTION end

exception_section;

END [function_name];

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

27/33

Procedure

CREATE or REPLACE PROCEDURE name(parameters)
IS

variables;
BEGIN
//statements;

END;
CREATE or REPLACE PROCEDURE INC_SAL(eno IN NUMBER, up_sal OUT NUMBER)

IS

BEGIN

UPDATE emp_table SET salary = salary+1000 WHERE emp_no = eno;
COMMIT;

SELECT sal INTO up_sal FROM emp_table WHERE emp_no = eno;
END;

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

28/33

Trigger

A trigger is a stored procedure in database which automatically invokes

whenever a special event in the database occurs.

* For example, a trigger can be invoked when a row is inserted into a

specified table or when certain table columns are being updated.

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

-

29/33

Trigger Syntax

create trigger [trigger_name]
|before | after]

{insert | update | delete}

on [table_name]

[for each row]

[trigger_body]

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

-

Trigger Example

mysql> desc Student;

Fmmm———— Fmmmm e Hmmm——- tmmm - Fmmmmmmm s -
| Field | Type | Null | Key | Default | Extra |
Fmmmmm - e e +----- Fmmmmm - Fmmmmmmmmm oo - -
tid	int(4)	NO	PRI	NULL	auto_increment
name	varchar(30)	YES		NULL	
subj1	int(2)	YES		NULL	
subj2	int(2)	YES		NULL	
subj3	int(2)	YES		NULL	
total	int(3)	YES		NULL	
per	int(3)	YES		NULL	
e Hmmmmmm e e o tmmmmm - Fmmmmmmmmm oo -

7 rows in set (©.00 sec)

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

31/33

Trigger Example

create trigger stud marks

before

INSERT

on Student

for each row

set Student.total = Student.subjl + Student.subj2 +
Student.subj3, Student.per = Student.total * 60 / 100;

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

w

-

32/33

Trigger Example

mysgl> insert into Student values(©, "ABCDE", 20, 20, 20, ©, ©);
Query OK, 1 row affected (©.09 sec)

mysql> select * from Student;
$----- $m-mmm-- $ommmm - $ommmm - $ommmm - $o-mmm-- $o-m--- -

| tid | name | subjl | subj2 | subj3 | total | per |
| 100 | ABCDE| 20| 20| 20| 60| 36|

e et dmmmm - Fmmmmm-- -

1 row in set (©.80 sec)

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

A.Aruna / AP /IT / SEM 4 / DBMS 05-03-2023

