Unit III – Database Design

Dependencies and Normal forms - Functional Dependencies, Armstrong's

axioms for FD's, closure of a set of FD's, minimal covers-Non- loss decomposition-First, Second, Third Normal Forms, Dependency Preservation-Boyce/Codd Normal Form-Multivalued Dependencies and Fourth Normal Form- Join Dependencies and Fifth Normal Form

Dependencies

Dependencies in DBMS is a relation between two or more attributes.

It has the following types in DBMS

- Functional Dependency
- Fully-Functional Dependency
- Transitive Dependency
- Multivalued Dependency
- Partial Dependency

Normal Forms

- Normalization is the process of minimizing redundancy from a relation or set of relations.
- Redundancy in relation may cause insertion, deletion, and update anomalies.
- So, it helps to minimize the redundancy in relations.
- Normal forms are used to eliminate or reduce redundancy in database tables.

INSTITUTIONS

Ę

Functional Dependencies

- A functional dependency is a constraint that specifies the relationship between two sets of attributes
 - where one set can accurately determine the value of other sets.
- It is denoted as $\mathbf{X} \rightarrow \mathbf{Y}$,
- where X is a set of attributes that is capable of determining the value of Y.
- The attribute set on the left side of the arrow, **X** is called **Determinant**, while on the right side, **Y** is called the **Dependent**.

Example 1

					Roll_no	Name	\checkmark
Roll no	Name	Marks	Dent	Course	Name	Roll_no	×
<u></u>			Dope	Course	Roll_no	marks	\checkmark
1	А	78	CS	C1	Dept	Course	×
2	B	60	EE	C1	Course	Dept	×
	D	00		CI	Roll_no,Name	Marks	\checkmark
3	А	78	CS	C2	Name	Marks	×
4	D	()	PP	<u> </u>	Name, Marks	Dept	✓
4	В	60	EE	L3	Name, Marks	Dept, Course	×
5	С	80	IT	С3	Roll_no	Name, marks	✓
					Dept, Course	Name	✓
6	Ь	80	FC	C2	Roll_no,Marks	Dept	~
U	u	00			Name	Course	×
A Aruna / AP / IT / SFM 4 / DBMS					Name,Marks, Dept	Roll_no	x 2025

A.Aruna / AP / IT / SEM 4 / DBMS

6/15

Example 2

roll_no	name	dept_name	dept_building
42	abc	СО	A4
43	pqr	IT	A3
44	xyz	СО	A4
45	xyz	IT	A3
46	mno	EC	B2
47	jkl	ME	B2

- roll_no → { name, dept_name, dept_building }, → Here, roll_no can determine values of fields name, dept_name and dept_building, hence a valid Functional dependency
- roll_no → dept_name , Since, roll_no can determine whole set of {name, dept_name, dept_building}, it can determine its subset dept_name also.
- dept_name → dept_building , Dept_name can identify the dept_building accurately, since departments with different dept_name will also have a different dept_building
- More valid functional dependencies: roll_no → name, {roll_no, name} ---> {dept_name, dept_building}, etc.

- name → dept_name Students with the same name can have different dept_name, hence this is not a valid functional dependency.
- dept_building → dept_name There can be multiple departments in the same building,
 For example, in the above table departments ME and EC are in the same building B2,
 hence dept_building → dept_name is an invalid functional dependency.
- More invalid functional dependencies: name → roll_no, {name, dept_name} → roll_no,
 dept_building → roll_no, etc.

Types of Functional Dependencies

- 1. Trivial functional dependency
- 2. Non-Trivial functional dependency
- 3. Multivalued functional dependency
- 4. Transitive functional dependency

10/15

Trivial functional dependency

- A dependent is always a subset of the determinant. i.e. If $X \rightarrow Y$ and Y is the subset of X, then it is called trivial functional dependency.
- $A \rightarrow B$ is trivial functional dependency if B is a subset of A.
- The following dependencies are also trivial: $A \rightarrow A \& B \rightarrow B$ Example 1 :
- ABC -> AB

INSTITUT

- ABC -> A
- ABC -> ABC

The dependent is strictly not a subset of the determinant. i.e. If $X \rightarrow Y$ and Y is not a subset of X, then it is called Non-trivial functional dependency.

Example 1 :

- Id -> Name
- Name -> DOB

Multivalued functional dependency

Entities of the dependent set are not dependent on each other. i.e. If $a \rightarrow \{b, c\}$ and there exists no functional dependency between b and c, then it is called a multivalued functional dependency.

bike_model	manuf_year	color
tu1001	2007	Black
tu1001	2007	Red
tu2012	2008	Black
tu2012	2008	Red
tu2222	2009	Black
tu2222	2009	Red

INSTITUTIONS

3/13/2025

13/15

Transitive functional dependency

- Dependent is indirectly dependent on determinant. i.e. If a \rightarrow b & b
 - \rightarrow c, then according to axiom of transitivity, a \rightarrow c. This is a transitive

functional dependency.

enrol_no \rightarrow dept and dept \rightarrow building_no. Hence, according to the axiom of transitivity, enrol_no \rightarrow building_no is a valid functional dependency. This is an indirect functional dependency, hence called Transitive functional dependency.

enrol_no	name	dept	building_no
42	abc	СО	4
43	pqr	EC	2
44	xyz	IT	1
45	abc	EC	2

