Unit III - Database Design

Dependencies and Normal forms - Functional Dependencies, **Armstrong's axioms for FD's,** closure of a set of FD's, minimal covers-Non- loss decomposition-First, Second, Third Normal Forms, Dependency Preservation-Boyce/Codd Normal Form-Multivalued Dependencies and Fourth Normal Form- Join Dependencies and

Types of Functional Dependencies

Dependencies in DBMS is a relation between two or more attributes.

- 1.Trivial functional dependency
- 2.Non-Trivial functional dependency
- 3. Multivalued functional dependency
- 4.Transitive functional dependency

Trivial functional dependency

• In **Trivial Functional Dependency**, a dependent is always a subset of the determinant.

If $X \rightarrow Y$ and Y is the subset of X, then it is called trivial functional dependency

Trivial functional dependency

• Example

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

{roll_no, name} → name is a trivial functional dependency, since the
dependent name is a subset of determinant set {roll_no, name}
Similarly, roll_no → roll_no is also an example of trivial functional dependency.

Non Trivial functional dependency

• In **Non-trivial functional dependency**, the dependent is strictly not a subset of the determinant.

If $X \rightarrow Y$ and Y is not a subset of X, then it is called Non-trivial functional dependency.

Non Trivial functional dependency

• Example

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

roll_no → name is a non-trivial functional dependency, since the dependent name is not
a subset of determinant roll_no

Similarly, $\{roll_no, name\} \rightarrow age$ is also a non-trivial functional dependency,

since age is not a subset of {roll_no, name}

Multivalued functional dependency

• Multivalued functional dependency, entities of the dependent set are not dependent on each other.

If a → {b, c} and there exists no functional dependency between b and
 c, then it is called a multivalued functional dependency.

Multivalued functional dependency

• Example

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18
45	abc	19

 $roll_no \rightarrow \{name, age\}$ is a multivalued functional dependency, since the

dependents **name** & **age** are **not dependent** on each other(i.e. **name** → **age** or **age** →

name doesn't exist!)

Transitive Functional dependency

• In transitive functional dependency, dependent is indirectly dependent on determinant.

• If $\mathbf{a} \to \mathbf{b} \& \mathbf{b} \to \mathbf{c}$, then according to axiom of transitivity, $\mathbf{a} \to \mathbf{c}$. This is a **transitive functional dependency**

Transitive functional dependency

Example

enrol_no	name	dept	building_no
42	abc	СО	4
43	pqr	EC	2
44	xyz	IT	1
45	abc	EC	2

enrol_no → **dept** and **dept** → **building_no**, Hence, according to the axiom of

transitivity, **enrol_no** → **building_no** is a valid functional dependency. This is an indirect

functional dependency, hence called Transitive functional dependency.

Armstrong's axioms for FD's

Primary

- **✓** Axiom of reflexivity
- **✓** Axiom of augmentation
- **✓** Axiom of transitivity

Secondary

- **✓** Union
- **✓** Composition
- **✓** Decomposition
- **✓ Pseudo Transitivity**

Axiom of reflexivity

- if Y is a subset of X, then X determines Y.
- If $X \supseteq Y$ then $X \rightarrow Y$
- $X \rightarrow X$

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	В	60	EE	C1
3	A	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

Axiom of Transitivity

if X determines Y and Y determine Z, then X must also determine Z.

• If $X \rightarrow Y$ and $Y \rightarrow Z$

then $X \rightarrow Z$

Ram is sibling of Sham Sham is sibling of Mohan

Ram is sibling of Mohan

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	В	60	EE	C1
3	A	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

Name → Marks and Marks → Dept then

name → Marks

Axiom of Augmentation Primary Rules 14/19

- The augmentation is also called as a partial dependency.
- In augmentation, if X determines Y, then XZ determines YZ for any Z.

• If $X \rightarrow Y$ then $XZ \rightarrow YZ$

R.No \rightarrow Name then

R.No, Marks → Name, marks

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	В	60	EE	C1
3	A	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

Secondary Rules Axiom of Union 15/19

• if X determines Y and X determines Z, then X must also determine Y and Z.

• If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$

R.No \rightarrow Name and R.No \rightarrow Marks R.No \rightarrow Name, marks

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	В	60	EE	C1
3	A	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

Secondary Rules

16/19

Axiom of Decomposition / Splitting

- Decomposition rule is also known as project rule. It is the reverse of union rule.
- if X determines Y and Z, then X determines Y and X determines Z separately.
- If $X \rightarrow YZ$ Then $X \rightarrow Y$ then $X \rightarrow Z$

Name, Marks→ Dept, Course then

Name, Marks→ Dept and

Name, Marks→ Dept, Course

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	В	60	EE	C1
3	A	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

Secondary Rules

17/19

Axiom of Pseudo Transitivity

- if X determines Y and YZ determines W, then XZ determines W.
- If $X \rightarrow Y$ and $YZ \rightarrow W$ then $XZ \rightarrow W$

Roll No → Name, and
Name, Marks → Dept
Then
Roll No, Marks → Dept

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	В	60	EE	C1
3	A	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

Secondary Rules

18/19

Axiom of Composition

• If $X \rightarrow Y$ and $A \rightarrow B$ then $XA \rightarrow YB$

Roll No → Name, and

Marks→ Dept

Then

Roll No, Marks→ Name, Dept

R.No	Name	Marks	Dept	Course
1	A	78	CS	C1
2	В	60	EE	C1
3	A	78	CE	C2
4	В	60	EE	C3
5	С	80	IT	C2

