
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)
COIMBATORE-641 035, TAMIL NADU

	

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

PROBLEM SOLIVING METHODS

Problem solving Methods – Search Strategies- Uninformed – Informed –
Heuristics – Local Search Algorithms and Optimization Problems - Searching
with Partial Observations – Constraint Satisfaction Problems – Constraint
Propagation - Backtracking Search – Game Playing – Optimal Decisions in Games
– Alpha – Beta Pruning – Stochastic Games

2.1 PROBLEM SOLVING BY SEARCH

An important aspect of intelligence is goal-based problem solving.

The solution of many problems can be described by finding a sequence
of actions that lead to a desirable goal. Each action changes the state and the aim
is to find the sequence of actions and states that lead from the initial (start) state to
a final (goal) state.

A well-defined problem can be described by:

Initial state

· Operator or successor function - for any state x returns s(x), the set of
states reachable from x with one action

· State space - all states reachable from initial by any

sequence of actions · Path - sequence through state space

· Path cost - function that assigns a cost to a path. Cost of a path is the
sum of costs of individual actions along the path

· Goal test - test to determine if at goal state

What is Search?

Search is the systematic examination of states to find path from the
start/root state to the goal state.

The set of possible states, together with operators defining their
connectivity constitute the search space.

The output of a search algorithm is a solution, that is, a path from the
initial state to a state that satisfies the goal test.

Problem-solving agents

A Problem solving agent is a goal-based agent. It decide what to do by
finding sequence of actions that lead to desirable states. The agent can adopt a
goal and aim at satisfying it.

To illustrate the agent’s behavior, let us take an example where our agent is in the city

24
of Arad, which is in Romania. The agent has to adopt a goal of getting to

Bucharest.

25
Goal formulation, based on the current situation and the agent’s performance measure,is the
first step in problem solving.

The agent’s task is to find out which sequence of actions will get to a goal state.

Problem formulation is the process of deciding what actions and states
to consider given a goal.

Example: Route finding problem
Referring to figure

On holiday in Romania : currently in Arad. Flight leaves tomorrow from Bucharest
Formulate goal: be in Bucharest

Formulate problem: states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Problem formulation

A problem is defined by four items:
initial state e.g., “at Arad"
successor function S(x) = set of action-state pairs e.g., S(Arad) = {[Arad -
>Zerind;Zerind],….} goal test, can be
explicit, e.g., x = at Bucharest" implicit, e.g., NoDirt(x)
path cost (additive)
e.g., sum of distances, number of actions executed, etc. c(x; a; y) is the step cost,
assumed to be >= 0

A solution is a sequence of actions leading from the initial state to a goal state.

Goal formulation and problem formulation

2.2 EXAMPLE PROBLEMS

The problem solving approach has been applied to a vast array of task
environments. Some best known problems are summarized below. They are
distinguished as toy or real-world problems

A toy problem is intended to illustrate various problem solving methods.
It can be easily used by different researchers to compare the performance of
algorithms.

A real world problem is one whose solutions people actually care about.

26
2.3 TOY PROBLEMS

Vacuum World Example

o States: The agent is in one of two locations, each of which might or might
not contain dirt. Thus there are 2 x 22 = 8 possible world states.

o Initial state: Any state can be designated as initial state.

o Successor function: This generates the legal states that results from trying
the three actions (left, right, suck). The complete state space is shown in figure

o Goal Test: This tests whether all the squares are clean.

o Path test: Each step costs one, so that the path cost is the number of steps in

the path. Vacuum World State Space

Figure 2.1 The state space for the vacuum world.
Arcs denote actions: L = Left, R = Right

The 8-puzzle

An 8-puzzle consists of a 3x3 board with eight numbered tiles and a blank

space. A tile adjacent to the balank space can slide into the space. The object is to
reach the goal state, as shown in Figure 2.4

Example: The 8-puzzle

27

Figure 2.2 A typical instance of 8-puzzle

The problem formulation is as follows:

o States : A state description specifies the location of each of the eight tiles and
the blank in one of the nine squares.

o Initial state : Any state can be designated as the initial state. It can be noted
that any given goal can be reached from exactly half of the possible initial states.

o Successor function : This generates the legal states that result from trying
the four actions(blank moves Left, Right, Up or down).

o Goal Test : This checks whether the state matches the goal configuration
shown in Figure(Other goal configurations are possible)

o Path cost : Each step costs 1,so the path cost is the number of steps in the path.

The 8-puzzle belongs to the family of sliding-block puzzles, which are
often used as test problems for new search algorithms in AI. This general class is
known as NP-complete. The 8-puzzle has 9!/2 = 181,440 reachable states and is
easily solved.

The 15 puzzle (4 x 4 board) has around 1.3 trillion states, an the random
instances can be solved optimally in few milli seconds by the best search
algorithms.

The 24-puzzle (on a 5 x 5 board) has around 1025 states and random

instances are still quite difficult to solve optimally with current machines and
algorithms.

8-Queens problem

The goal of 8-queens problem is to place 8 queens on the chessboard
such that no queen attacks any other.(A queen attacks any piece in the same row,
column or diagonal).

Figure 2.3 shows an attempted solution that fails: the queen in the right
most column is attacked by the queen at the top left.

An Incremental formulation involves operators that augments the state
description, starting with an empty state. For 8-queens problem, this means each
action adds a queen to the state. A complete-state formulation starts with all 8
queens on the board and move them around. In either case the path cost is of no
interest because only the final state counts.

28

Figure 2.3 8-queens problem

The first incremental formulation one might try is the following:

o States: Any arrangement of 0 to 8 queens on board is a state.
o Initial state: No queen on the board.
o Successor function: Add a queen to any empty square.
o Goal Test: 8 queens are on the board, none attacked.

In this formulation, we have 64.63…57 = 3 x 1014 possible sequences to investigate.

A better formulation would prohibit placing a queen in any square that is
already attacked.

o States : Arrangements of n queens (0 <= n < = 8),one per column in
the left most columns, with no queen attacking another are states.

o Successor function : Add a queen to any square in the left most
empty column such that it is not attacked by any other queen.

This formulation reduces the 8-queen state space from 3 x 1014 to just
2057,and solutions are easy to find.

For the 100 queens the initial formulation has roughly 10400 states whereas
the improved formulation has about 1052 states. This is a huge reduction, but the
improved state space is still too big for the algorithms to handle.

2.4 REAL-WORLD PROBLEMS

ROUTE-FINDING PROBLEM

Route-finding problem is defined in terms of specified locations and
transitions along links between them. Route-finding algorithms are used in a
variety of applications, such as routing in computer networks, military operations
planning, and airline travel planning systems.

29
2.5 AIRLINE TRAVEL PROBLEM

The airline travel problem is specifies as follows:

o States: Each is represented by a location (e.g., an airport) and the

current time. o Initial state: This is specified by the problem.

o Successor function: This returns the states resulting from taking any scheduled
flight (further specified by seat class and location),leaving later than the
current time plus the within-airport transit time, from the current airport to
another.

o Goal Test: Are we at the destination by some prespecified time?

o Path cost: This depends upon the monetary cost, waiting time, flight time,
customs and immigration procedures, seat quality, time of date, type of air
plane, frequent-flyer mileage awards, and so on.

2.6 TOURING PROBLEMS

Touring problems are closely related to route-finding problems, but with
an important difference. Consider for example, the problem, “Visit every city at
least once” as shown in Romania map.

As with route-finding the actions correspond to trips between adjacent
cities. The state space, however, is quite different.

The initial state would be “In Bucharest; visited{Bucharest}”.

A typical intermediate state would be “In Vaslui;visited {Bucharest, Urziceni,Vaslui}”.

The goal test would check whether the agent is in Bucharest and all 20
cities have been visited.

