
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)
COIMBATORE-641 035, TAMIL NADU

	

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

PROBLEM SOLIVING METHODS

2.7 THE TRAVELLING SALESPERSON PROBLEM(TSP)

Is a touring problem in which each city must be visited exactly once. The aim is to find
the shortest tour. The problem is known to be NP-hard. Enormous efforts have been expended
to improve the capabilities of TSP algorithms. These algorithms are also used in tasks such as
planning movements of automatic circuit-board drills and of stocking machines on shop
floors.

VLSI layout

A VLSI layout problem requires positioning millions of components and connections
on a chip to minimize area, minimize circuit delays, minimize stray capacitances, and maximize
manufacturing yield. The layout problem is split into two parts: cell layout and channel
routing.

30
ROBOT navigation

ROBOT navigation is a generalization of the route-finding problem. Rather than a
discrete set of routes, a robot can move in a continuous space with an infinite set of possible
actions and states. For a circular Robot moving on a flat surface, the space is essentially two
dimensional. When the robot has arms and legs or wheels that also must be controlled, the
search space becomes multi-dimensional. Advanced techniques are required to make the search
space finite.

2.8 AUTOMATIC ASSEMBLY SEQUENCING

The example includes assembly of intricate objects such as electric motors. The aim in
assembly problems is to find the order in which to assemble the parts of some objects. If the
wrong order is choosen, there will be no way to add some part later without undoing some
work already done. Another important assembly problem is protein design, in which the goal
is to find a sequence of Amino acids that will be fold into a three-dimensional protein with
theright properties to cure some disease.

2.9 INTERNET SEARCHING

In recent years there has been increased demand for software robots that perform
Internet searching, looking for answers to questions, for related information, or for shopping
deals. The searching techniques consider internet as a graph of nodes(pages) connected by
links.

31
2.10 UNINFORMED SEARCH STRATGES

Uninformed Search Strategies have no additional information about states beyond
that provided in the problem definition.

Strategies that know whether one non goal state is “more promising” than another are
called

Informed search or heuristic search strategies.

There are five uninformed search strategies as given below.

o Breadth-first search
o Uniform-cost search
o Depth-first search
o Depth-limited search
o Iterative deepening search

Breadth-first search

o Breadth-first search is a simple strategy in which the root node is expanded first, then all
successors of the root node are expanded next, then their successors, and so on. In
general, all the nodes are expanded at a given depth in the search tree before any nodes
at the next level are expanded.

o Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe that is
a first-in-first-out (FIFO) queue, assuring that the nodes that are visited first will be
expanded first. In otherwards, calling TREE-SEARCH (problem, FIFO-QUEUE())
results in breadth-first-search. The FIFO queue puts all newly generated successors at
the end of the queue, which means that Shallow nodes are expanded before deeper
nodes.

Figure 2.5 Breadth-first search on a simple binary tree. At each stage,
the node to be expanded next is indicated by a marker.

32
Properties of breadth-first-search

Time complexity for BFS

Assume every state has b successors. The root of the search tree generates
b nodes at the first level, each of which generates b more nodes, for a total of b2at
the second level. Each of these generates b more nodes, yielding b3nodes at the
third level, and so on. Now suppose, that the solution is at depth d. In the worst
case, we would expand all but the last node at level d, generating bd+1- b nodes at
level d+1.

Then the total number of nodes generated is b + b2 + b3 + …+ bd + (bd+1 + b) = O(bd+1).

Every node that is generated must remain in memory, because it is either
part of the fringe or is an ancestor of a fringe node. The space compleity is,
therefore, the same as the time complexity

2.11 UNIFORM-COST SEARCH

Instead of expanding the shallowest node, uniform-cost search expands
the node n with the lowest path cost. Uniform-cost search does not care about the
number of steps a path has, but only about their total cost.

33
2.12 DEPTH-FIRST-SEARCH

Depth-first-search always expands the deepest node in the current fringe
of the search tree. The progress of the search is illustrated in Figure 1.31. The
search proceeds immediately to the deepest level of the search tree, where the
nodes have no successors. As those nodes are expanded, they are dropped from
the fringe, so then the search “backs up” to the next shallowest node that still has
unexplored successors.

This strategy can be implemented by TREE-SEARCH with a last-in-first-
out (LIFO) queue, also known as a stack.

Depth-first-search has very modest memory requirements. It needsto store
only a single path from the root to a leaf node, along with the remaining
unexpanded sibling nodes for each node on the path. Once the node has been
expanded, it can be removed from the memory, as soon as its descendants have
been fully explored (Refer Figure 2.7).

For a state space with a branching factor b and maximum depth m, depth-
first-search requires storage of only bm + 1 nodes.

Using the same assumptions as Figure, and assuming that nodes at the
same depth as the goal node have no successors, we find the depth-first-search
would require 118 kilobytes instead of 10 petabytes, a factor of 10 billion times
less space.

34
Drawback of Depth-first-search

The drawback of depth-first-search is that it can make a wrong choice and
get stuck going down very long(or even infinite) path when a different choice
would lead to solution near the root of the search tree. For example, depth-first-
search will explore the entire left subtree even if node C is a goal node.

2.12 BACKTRACKING SEARCH

A variant of depth-first search called backtracking search uses less
memory and only one successor is generated at a time rather than all successors.;
Only O(m) memory is needed rather than O(bm)

DEPTH-LIMITED-SEARCH

The problem of unbounded trees can be alleviated by supplying depth-
first-search with a pre- determined depth limit l. That is, nodes at depth l are treated
as if they have no successors. This approach is called depth-limited-search. The
depth limit soves the infinite path problem.

Depth limited search will be nonoptimal if we choose l > d. Its time
complexity is O(bl) and its space complete is O(bl). Depth-first-search can be
viewed as a special case of depth limited search with l = oo Sometimes, depth
limits can be based on knowledge of the problem. For, example, on the map of
Romania there are 20 cities. Therefore, we know that if there is a solution, it must
be of length 19 at the longest, So l = 10 is a possible choice. However, it can be
shown that any city can be reached from any other city in at most 9 steps. This
number known as the diameter of the state space, gives us a better depth limit.

35
Depth-limited-search can be implemented as a simple modification to the

general tree search algorithm or to the recursive depth-first-search algorithm. The
pseudocode for recursive depth- limited-search is shown in Figure.

It can be noted that the above algorithm can terminate with two kinds of
failure : the standard failure value indicates no solution; the cutoffvalue indicates
no solution within the depth limit. Depth-limited search = depth-first search with
depth limit l,returns cut off if any path is cut off by depth limit

function Depth-Limited-Search(problem, limit) returns a solution/fail/cutoff return
Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit) function
Recursive DLS(node, problem, limit) returns solution/fail/cutoff cutoff-occurred?
false
if Goal-Test(problem,State[node]) then return Solution(node)
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node, problem) do result
Recursive-DLS(successor, problem, limit) if result = cutoff then
cutoff_occurred?true else if result not = failure then return result
ifcutoff_occurred? then return cutoff else return failure

Figure 2.9 Recursive implementation of Depth-limited-search

2.13 ITERATIVE DEEPENING DEPTH-FIRST SEARCH

Iterative deepening search (or iterative-deepening-depth-first-search) is a
general strategy often used in combination with depth-first-search, that finds the
better depth limit. It does this by gradually increasing the limit – first 0,then 1,then
2, and so on – until a goal is found. This will occur when the depth limit reaches

d, the depth of the shallowest goal node. The algorithm is shown in Figure.

Iterative deepening combines the benefits of depth-first and breadth-first-
search Like depth-first-search, its memory requirements are modest; O(bd) to be
precise.

Like Breadth-first-search, it is complete when the branching factor is
finite and optimal when the path cost is a non decreasing function of the depth of
the node.

Figure shows the four iterations of ITERATIVE-
DEEPENING_SEARCH on a binary search tree, where the solution is found on
the fourth iteration.

36

