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PROBLEM SOLIVING METHODS  

2.7 THE TRAVELLING SALESPERSON PROBLEM(TSP)  

Is a touring problem in which each city must be visited exactly once. The aim is to find 
the shortest tour. The problem is known to be NP-hard. Enormous efforts have been expended 
to improve the capabilities of TSP algorithms. These algorithms are also used in tasks such as 
planning movements of automatic circuit-board drills and of stocking machines on shop 
floors.  

VLSI layout  

A VLSI layout problem requires positioning millions of components and connections 
on a chip to minimize area, minimize circuit delays, minimize stray capacitances, and maximize 
manufacturing yield. The layout problem is split into two parts: cell layout and channel 
routing. 
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ROBOT navigation  

ROBOT navigation is a generalization of the route-finding problem. Rather than a 
discrete set of routes, a robot can move in a continuous space with an infinite set of possible 
actions and states. For a circular Robot moving on a flat surface, the space is essentially two 
dimensional. When the robot has arms and legs or wheels that also must be controlled, the 
search space becomes multi-dimensional. Advanced techniques are required to make the search 
space finite.  

2.8 AUTOMATIC ASSEMBLY SEQUENCING  

The example includes assembly of intricate objects such as electric motors. The aim in 
assembly problems is to find the order in which to assemble the parts of some objects. If the 
wrong order is choosen, there will be no way to add some part later without undoing some 
work  already done. Another important assembly problem is protein design, in which the goal 
is to find a sequence of Amino acids that will be fold into a three-dimensional protein with 
theright properties to cure some disease.  



2.9 INTERNET SEARCHING  

In recent years there has been increased demand for software robots that perform 
Internet searching, looking for answers to questions, for related information, or for shopping 
deals. The searching techniques consider internet as a graph of nodes(pages) connected by 
links.  
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2.10 UNINFORMED SEARCH STRATGES  

Uninformed Search Strategies have no additional information about states beyond 
that provided in the problem definition.  

Strategies that know whether one non goal state is “more promising” than another are 
called  

Informed search or heuristic search strategies.  

There are five uninformed search strategies as given below.  

o Breadth-first search  
o Uniform-cost search  
o Depth-first search  
o Depth-limited search  
o Iterative deepening search  

Breadth-first search  

o Breadth-first search is a simple strategy in which the root node is expanded first, then all 
successors of the root node are expanded next, then their successors, and so on. In 
general, all the nodes are expanded at a given depth in the search tree before any nodes 
at the next level are expanded.  

o Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe that is 
a first-in-first-out (FIFO) queue, assuring that the nodes that are visited first will be 
expanded first. In otherwards, calling TREE-SEARCH (problem, FIFO-QUEUE()) 
results in breadth-first-search. The FIFO queue puts all newly generated successors at 
the end of the queue, which means that Shallow nodes are expanded before deeper 
nodes. 

 
 



Figure 2.5 Breadth-first search on a simple binary tree. At each stage, 
the node to be expanded next is indicated by a marker. 
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Properties of breadth-first-search  

 
 

Time complexity for BFS  

Assume every state has b successors. The root of the search tree generates 
b nodes at the first level, each of which generates b more nodes, for a total of b2at 
the second level. Each of these generates b more nodes, yielding b3nodes at the 
third level, and so on. Now suppose, that the solution is at depth d. In the worst 
case, we would expand all but the last node at level d, generating bd+1- b nodes at 
level d+1.  

Then the total number of nodes generated is b + b2 + b3 + …+ bd + ( bd+1 + b) = O(bd+1).  

Every node that is generated must remain in memory, because it is either 
part of the fringe or is an ancestor of a fringe node. The space compleity is, 
therefore, the same as the time complexity  

2.11 UNIFORM-COST SEARCH  

Instead of expanding the shallowest node, uniform-cost search expands 
the node n with the lowest path cost. Uniform-cost search does not care about the 
number of steps a path has, but only about their total cost. 
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2.12 DEPTH-FIRST-SEARCH  

Depth-first-search always expands the deepest node in the current fringe 
of the search tree. The progress of the search is illustrated in Figure 1.31. The 
search proceeds immediately to the deepest level of the search tree, where the 
nodes have no successors. As those nodes are expanded, they are dropped from 
the fringe, so then the search “backs up” to the next shallowest node that still has 
unexplored successors.  

 
 

  

This strategy can be implemented by TREE-SEARCH with a last-in-first-
out (LIFO) queue, also known as a stack.  

Depth-first-search has very modest memory requirements. It needsto store 
only a single path from the root to a leaf node, along with the remaining 
unexpanded sibling nodes for each node on the path. Once the node has been 
expanded, it can be removed from the memory, as soon as its descendants have 
been fully explored (Refer Figure 2.7).  

For a state space with a branching factor b and maximum depth m, depth-
first-search requires storage of only bm + 1 nodes.  

Using the same assumptions as Figure, and assuming that nodes at the 
same depth as the goal node have no successors, we find the depth-first-search 
would require 118 kilobytes instead of 10 petabytes, a factor of 10 billion times 
less space. 
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Drawback of Depth-first-search  

The drawback of depth-first-search is that it can make a wrong choice and 
get stuck going down very long(or even infinite) path when a different choice 
would lead to solution near the root of the search tree. For example, depth-first-
search will explore the entire left subtree even if node C is a goal node.  

2.12 BACKTRACKING SEARCH  

A variant of depth-first search called backtracking search uses less 
memory and only one successor is generated at a time rather than all successors.; 
Only O(m) memory is needed rather than O(bm)  

DEPTH-LIMITED-SEARCH  
 
 



The problem of unbounded trees can be alleviated by supplying depth-
first-search with a pre- determined depth limit l. That is, nodes at depth l are treated 
as if they have no successors. This approach is called depth-limited-search. The 
depth limit soves the infinite path problem.  

Depth limited search will be nonoptimal if we choose l > d. Its time 
complexity is O(bl) and its space complete is O(bl). Depth-first-search can be 
viewed as a special case of depth limited search with l = oo Sometimes, depth 
limits can be based on knowledge of the problem. For, example, on the map of 
Romania there are 20 cities. Therefore, we know that if there is a solution, it must 
be of length 19 at the longest, So l = 10 is a possible choice. However, it can be 
shown that any city can be reached from any other city in at most 9 steps. This 
number known as the diameter of the state space, gives us a better depth limit. 
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Depth-limited-search can be implemented as a simple modification to the 

general tree search algorithm or to the recursive depth-first-search algorithm. The 
pseudocode for recursive depth- limited-search is shown in Figure.  

It can be noted that the above algorithm can terminate with two kinds of 
failure : the standard failure value indicates no solution; the cutoffvalue indicates 
no solution within the depth limit. Depth-limited search = depth-first search with 
depth limit l,returns cut off if any path is cut off by depth limit  

function Depth-Limited-Search( problem, limit) returns a solution/fail/cutoff return 
Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit) function 
Recursive DLS(node, problem, limit) returns solution/fail/cutoff cutoff-occurred? 
false  
if Goal-Test(problem,State[node]) then return Solution(node)  
else if Depth[node] = limit then return cutoff  
else for each successor in Expand(node, problem) do result  
Recursive-DLS(successor, problem, limit) if result = cutoff then 
cutoff_occurred?true else if result not = failure then return result  
ifcutoff_occurred? then return cutoff else return failure 

Figure 2.9 Recursive implementation of Depth-limited-search 

 
 

2.13 ITERATIVE DEEPENING DEPTH-FIRST SEARCH  

Iterative deepening search (or iterative-deepening-depth-first-search) is a 
general strategy often used in combination with depth-first-search, that finds the 
better depth limit. It does this by gradually increasing the limit – first 0,then 1,then 
2, and so on – until a goal is found. This will occur when the depth limit reaches 



d, the depth of the shallowest goal node. The algorithm is shown in Figure.  

Iterative deepening combines the benefits of depth-first and breadth-first-
search Like depth-first-search, its memory requirements are modest; O(bd) to be 
precise.  

Like Breadth-first-search, it is complete when the branching factor is 
finite and optimal when the path cost is a non decreasing function of the depth of 
the node.  

Figure shows the four iterations of ITERATIVE-
DEEPENING_SEARCH on a binary search tree, where the solution is found on 
the fourth iteration. 
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