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LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS  

o In many optimization problems, the path to the goal is irrelevant; the goal state itself is the 
solution  

o For example, in the 8-queens problem, what matters isthe final configuration of queens, 
not the order in which they are added.  

o In such cases, we can use local search algorithms. They operate using a single current 
state (rather than multiple paths) and generally move only to neighbors of that state. 

o The important applications of these class of problems are (a) integrated-circuit design, (b) 
Factory-floor layout, (c) job-shop scheduling, (d) automatic programming, (e) 
telecommunications network optimization, (f) Vehicle routing, and (g) portfolio 
management.  

Key advantages of Local Search Algorithms  

(1) They use very little memory – usually a constant amount; and  

(2) they can often find reasonable solutions in large or infinite(continuous) state spaces for 
which systematic algorithms are unsuitable.  

2.18 OPTIMIZATION PROBLEMS  

In addition to finding goals, local search algorithms are useful for solving pure 
optimization problems, in which the aim is to find the best state according to an objective 
function.  

State Space Landscape  

To understand local search, it is better explained using state space landscape as 
shown in Figure.  

A landscape has both “location” (defined by the state) and “elevation” (defined by 
the value of the heuristic cost function or objective function).  

If elevation corresponds to cost, then the aim is to find the lowest valley – a global 
minimum; if elevation corresponds to an objective function, then the aim isto find the highest 
peak – a global maximum.  

Local search algorithms explore this landscape. A complete local search algorithm 
always finds a goal if one exists; an optimal algorithm always finds a global 
minimum/maximum. 

 
Hill-climbing search  



The hill-climbing search algorithm as shown in figure, is simply a loop that continually 
moves in the direction of increasing value – that is, uphill. It terminates when it reaches a 
“peak” where no neighbor has a higher value.  

function HILL-CLIMBING( problem) return a state that is a local 
maximum input: problem, a problem  

local variables: current, a  
node.  

neighbor, a node.  

current ←MAKE-NODE(INITIAL-STATE[problem])  
loop do  

neighbor ← a highest valued successor of current  
if VALUE [neighbor] ≤ VALUE[current] then return 
STATE[current] current ←neighbor 

Figure 2.24 The hill-climbing search algorithm (steepest ascent version), which 
is the most basic local search technique. At each step the current node is 

replaced by the best neighbor; the neighbor with the highest VALUE. If the 
heuristic cost estimate h is used, we could find the neighbor with the lowest h. 

 
 

Hill-climbing is sometimes called greedy local search because it grabs a good neighbor 
state without thinking ahead about where to go next. Greedy algorithms often perform quite 
well. Problems with hill-climbing  

Hill-climbing often gets stuck for the following reasons :  

· Local maxima: a local maximum is a peak that is higher than each of its neighboring states, 
but lower than the global maximum. Hill-climbing algorithms that reach the vicinity of 
a local maximum will be drawn upwards towards the peak, but will then be stuck with 
nowhere else to go  

· Ridges: A ridge is shown in Figure 2.10. Ridges results in a sequence of local maxima that 
is very difficult for greedy algorithms to navigate.  

· Plateaux: A plateau is an area of the state space landscape where the evaluation function is 
flat. It can be a flat local maximum, from which no uphill exit exists, or a shoulder, 
from which it is possible to make progress. 

 
 

Hill-climbing variations  

� Stochastic hill-climbing  

o Random selection among the uphill moves.  



o The selection probability can vary with the steepness of the uphill move. 

� First-choice hill-climbing  

o cfr. stochastic hill climbing by generating successors randomly until a better 
one is found.  

� Random-restart hill-climbing  

o Tries to avoid getting stuck in local maxima.  

Simulated annealing search  

A hill-climbing algorithm that never makes “downhill” moves towards states with lower 
value (or higher cost) is guaranteed to be incomplete, because it can stuck on a local maximum. 
In contrast, a purely random walk –that is, moving to a successor choosen uniformly at random 
from the set of successors – is complete, but extremely inefficient.  

Simulated annealing is an algorithm that combines hill-climbing with a random walk 
in someway that yields both efficiency and completeness.  

Figure shows simulated annealing algorithm. It is quite similar to hill climbing. Instead 
of picking the best move, however, it picks the random move. If the move improves the 
situation, it is always accepted. Otherwise, the algorithm accepts the move with some 
probability less than 1. The probability decreases exponentially with the “badness” of the move 
– the amount E by which the evaluation is worsened. 
Simulated annealing was first used extensively to solve VLSI layout problems in the early 
1980s. It has been applied widely to factory scheduling and other large-scale optimization 
tasks.  

 
 

Genetic algorithms  

A Genetic algorithm (or GA) is a variant of stochastic beam search in which 
successor states are generated by combining two parent states, rather than by modifying a 
single state  

Like beam search, Gas begin with a set of k randomly generated states, called the 
population. Each state, or individual, is represented as a string over a finite alphabet – most 
commonly, a string of 0s and 1s. For example, an 8 8-quuens state must specify the positions 
of 8 queens, each in a column of 8 squares, and so requires 8 x log2 8 = 24 bits. 

 
 

Figure shows a population of four 8-digit strings representing 8-queen states. The 
production of the next generation of states is shown in Figure  

In (b) each state is rated by the evaluation function or the fitness function.  

In (c),a random choice of two pairs is selected for reproduction, in accordance with 
the probabilities in (b).  



Figure describes the algorithm that implements all these steps.  

function GENETIC_ALGORITHM( population, FITNESS-FN) return an 
individual input: population, a set of individuals  

FITNESS-FN, a function which determines the quality of the 
individual repeat  

new_population←empty set  
loop for ifrom 1 to SIZE(population) do  

x ←RANDOM_SELECTION(population, FITNESS_FN)  
y ←RANDOM_SELECTION(population,  

FITNESS_FN)  
child ←REPRODUCE(x,y)  

if (small random probability) then child   
MUTATE(child ) add child to new_population  

population ←new_population  
until some individual is fit enough or enough time has elapsed  
return the best individual 

Figure 2.28 A genetic algorithm. 

 


