
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade 
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER APPLICATIONS

23CAT606 – JAVA PROGRAMMING
I YEAR II SEM

UNIT III – NETWORKING AND I/O PACKAGES

TOPIC 1 - MULTITHREADING



Agenda

24.05.25 2/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

 Introduction to Thread

Creation of Thread

Life cycle of Thread

Stopping and Blocking a Thread

Using Thread Methods

Thread Priority

Thread Synchronization

DeadLock



MULTITHREADING 

24.05.
25

3/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT



INTRODUCTION TO THREAD

24.05.
25

4/15Multithreading/23CAT606- Java ProgrammingNandhini N/MCA/SNSCT

Process and Thread are two basic units of Java program  execution.

1. Process: A process is a self contained execution environment and it can seen as a 

program or applications

2. Thread: It can be called lightweight process. Thread requires less resources to create 

and exists in the  process. Thread shares the process resources.

3. Multithreading in java is a process of executing  multiple processes simultaneously.

4. A program is divided into two or more subprograms,  which can be implemented at 

the same time in  parallel.

5. Multiprocessing and multithreading, both are used to  achieve multitasking.

6. Java Multithreading is mostly used in games,  animation etc.



Why Use Multithreading?

24.05.
25

5/15Multithreading/23CAT606- Java ProgrammingNandhini N/MCA/SNSCT

1. Resource Sharing: Threads share the same process’s resources, such as memory, 

which makes inter-thread communication easier.

2. Responsiveness: Applications can remain responsive to user inputs, even if a part of 

it is waiting for a long operation to complete.

3. Performance: On multi-core processors, threads can run in parallel, leading to better 

resource utilization and faster application performance.



LIFE cycle of a thread

24.05.
25

6/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

Java provides built-in support for

multithreading via its java.lang package.

The primary classes and interfaces involved

are:

1.Thread class

2.Runnable interface
1. Newborn state

2. Runnable state

3. Running state

4. Blocked state

5. Dead state



LIFE cycle of a thread

24.05.
25

7/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

Newborn State:

1. The thread is born and is said to be in newborn state.

2. The thread is not yet scheduled for running.

3. At this state, we can do only one of the following:

1. Schedule it for running using start() method.

2. Kill it using stop() method.



LIFE cycle of a thread

24.05.
25

8/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

Running State:

1. Thread is executing

2. The processor has given its time to the thread for its

execution.

3. The thread runs until it gives up control on its own or

taken over by other threads.

Runnable State:

1. The thread is ready for execution

2. Waiting for the availability of the processor.

3. The thread has joined the queue



LIFE cycle of a thread

24.05.
25

9/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

Blocked State:

1. A thread is said to be blocked

2. It is prevented to entering into the runnable and the running state.

3. This happens when the thread is

1. Suspended: suspend()

2. Sleeping: sleep()

3. Waiting : wait() - in order to satisfy certain requirements.

4. A blocked thread is considered "not runnable" but not dead and therefore fully qualified to

run again.



LIFE cycle of a thread

24.05.
25

10/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

Dead State:

1. Every thread has a life cycle.

2. Natural Death: A running thread ends its life when it has completed executing its run( )

method. It is a natural death.

3. Premature Death: A thread can be killed in born, or in running, or even in "not runnable"

(blocked) condition. This state is achieved when we invoke stop() method or the thread

completes it execution.



Thread Methods

24.05.
25

11/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

Method Signature Description

String getName() Retrieves the name of running thread in the current context in String format

void start() This method will start a new thread of execution by calling run() method of

Thread/runnable object.

void run() This method is the entry point of the thread. Execution of thread starts from this

method.

void sleep(int sleeptime) This method suspend the thread for mentioned time duration in argument

(sleeptime in ms)

void yield() By invoking this method the current thread pause its execution temporarily and

allow other threads to execute.

void join() This method used to queue up a thread in execution. Once called on thread, current

thread will wait till calling thread completes its execution

boolean isAlive() This method will check if thread is alive or dead



Program: Using Runnable interface

24.05.
25

12/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

class Multi implements Runnable {
public void run()
{

try {
// Displaying the thread that is running
System.out.println(

"Thread " + Thread.currentThread().getId() + " is running");
}
catch (Exception e) {

// Throwing an exception
System.out.println("Exception is caught");

}
}

}

public class Multithread {

public static void main(String[] args)

{

int n = 8; // Number of threads

for (int i = 0; i < n; i++) {

Multi obj = new Multi();

obj.start();

}

}

}

Thread 15 is running 
Thread 14 is running 
Thread 16 is running 
Thread 12 is running 
Thread 11 is running 
Thread 13 is running 
Thread 18 is running 
Thread 17 is running 



Program: Using Thread Class 

24.05.
25

13/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

class Multi extends Thread {
public void run()
{

try {
// Displaying the thread that is running
System.out.println(

"Thread " + Thread.currentThread().getId() + " is running");
}
catch (Exception e) {

// Throwing an exception
System.out.println("Exception is caught");

}
}

}

public class Multithread {

public static void main(String[] args)

{

int n = 8; // Number of threads

for (int i = 0; i < n; i++) {

Multi obj = new Multi();

obj.start();

}

}

}

Thread 15 is running 
Thread 14 is running 
Thread 16 is running 
Thread 12 is running 
Thread 11 is running 
Thread 13 is running 
Thread 18 is running 
Thread 17 is running 



Thread Class vs Runnable Interface

24.05.25 14/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT

1. If we extend the Thread class, our class cannot extend any other class because

Java doesn’t support multiple inheritance. But, if we implement the Runnable

interface, our class can still extend other base classes.

2. We can achieve basic functionality of a thread by extending Thread class because

it provides some inbuilt methods like yield(), interrupt() etc. that are not available

in Runnable interface.

3. Using runnable will give you an object that can be shared amongst multiple

threads.



24.05.25 15/15Multithreading/23CAT606- Java Programming/Dr.Nandhini N/MCA/SNSCT


