SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS

23MAT203-PROBABILITY AND RANDOM PROCESSES

UNIT 3 CLASSIFICATION OF RANDOM PROCESSES Two marks

1. Define Random processes and give an example of a random process.

A Random process is a collection of R.V $\{X(s,t)\}$ that are functions of a real variable namely time t where $s \in S$ and $t \in T$ **Example**:

 $X(t) = A\cos(\omega t + \theta)$ where θ is uniformly distributed in $(0, 2\pi)$ where A and ω are constants.

2. State the four classifications of Random processes.

The Random processes is classified into four types

(i)Discrete random sequence

If both T and S are discrete then Random processes is called a discrete Random sequence.

(ii)Discrete random processes

If T is continuous and S is discrete then Random processes is called a Discrete Random processes.

(iii)Continuous random sequence

If T is discrete and S is continuous then Random processes is called a Continuous Random sequence.

(iv)Continuous random processes

If T &S are continuous then Random processes is called a continuous Random processes.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore – 641 035

DEPARTMENT OF MATHEMATICS 23MAT203-PROBABILITY AND RANDOM PROCESSES

3. Define stationary Random processes.

If certain probability distributions or averages do not depend on t, then the random process $\{X(t)\}$ is called stationary.

4. Define first order stationary Random processes.

A random processes $\{X(t)\}$ is said to be a first order SSS process if $f(x_1,t_1+\delta)=f(x_1,t_1)$ (i.e.) the first order density of a stationary process $\{X(t)\}$ is independent of time t

5. Define second order stationary Random processes

A RP $\{X(t)\}$ is said to be second order SSS if $f(x_1, x_2, t_1, t_2) = f(x_1, x_2, t_1 + h, t_2 + h)$ where $f(x_1, x_2, t_1, t_2)$ is the joint PDF of $\{X(t_1), X(t_2)\}$.

6. Define strict sense stationary Random processes

Sol: A RP $\{X(t)\}$ is called a SSS process if the joint distribution $X(t_1)X(t_{21})X(t_3).....X(t_n)$ is the same as that of $X(t_1+h)X(t_2+h)X(t_3+h).....X(t_n+h)$ for all $t_1,t_2,t_3.....t_n$ and h>0 and for $n \ge 1$.

7. Define wide sense stationary Random processes

A RP $\{X(t)\}$ is called WSS if $E\{X(t)\}$ is constant and $E[X(t)X(t+\tau)] = R_{xx}(\tau)$ (i.e.) ACF is a function of τ only.

8. Define jointly strict sense stationary Random processes

Sol: Two real valued Random Processes $\{X(t)\}$ and $\{Y(t)\}$ are said to be jointly stationary in the strict sense if the joint distribution of the $\{X(t)\}$ and $\{Y(t)\}$ are invariant under translation of time.

9. Define jointly wide sense stationary Random processes

Sol: Two real valued Random Processes $\{X(t)\}$ and $\{Y(t)\}$ are said to be jointly stationary in the wide sense if each process is individually a WSS process and $R_{XY}(t_1, t_2)$ is a function of t_1, t_2 only.

10. Define Evolutionary Random processes and give an example.

Sol: A Random processes that is not stationary in any sense is called an Evolutionary process. Example: Poisson process.

₽ *****

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore – 641 035

DEPARTMENT OF MATHEMATICS 23MAT203-PROBABILITY AND RANDOM PROCESSES

11. When is a random process said to be ergodic? Give an example

Answer: A R.P $\{X(t)\}$ is ergodic if its ensembled averages equal to appropriate time averages. Example: $X(t) = A\cos(\omega t + \theta)$ where θ is uniformly distributed in $(0,2\pi)$ is mean ergodic.

12. Define Markov Process.

Sol: If for
$$t_1 < t_2 < t_3 < t_4$$
...... $< t$ then $P(X(t) \le x / X(t_1) = x_1, X(t_2) = x_2, \dots, X(t_n) = x_n) = P(X(t) \le x / X(t_n) = x_n)$ Then the process $\{X(t)\}$ is called a Markov process.

13. Define Markov chain.

Sol: A Discrete parameter Markov process is called Markov chain.

14. Define one step transition probability.

Sol: The one step probability $P[X_n = a_j / X_{n-1} = a_i]$ is called the one step probability from the state a_i to a_j at the n^{th} step and is denoted by $P_{ij}(n-1,n)$

19. Consider a Markov chain with two states and transition probability matr

 $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$. Find the stationary probabilities of the chain.

Sol:
$$(\pi_1, \pi_2)\begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} = (\pi_1, \pi_2)$$
 $\pi_1 + \pi_2 = 1$
$$\frac{3}{4}\pi_1 + \frac{\pi_2}{4} = \pi_1 \Rightarrow \frac{\pi_1}{4} - \frac{\pi_2}{2} = 0. \qquad \therefore \pi_1 = 2\pi_2$$

$$\therefore \pi_1 = \frac{2}{3}, \pi_2 = \frac{1}{3}.$$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore – 641 035

DEPARTMENT OF MATHEMATICS 23MAT203-PROBABILITY AND RANDOM PROCESSES

If the input x(t) and its output y(t) are related by $y(t) = \int_{-\infty}^{\infty} f(u) \cdot x(t-u) \, du$, then the system is linear time invariant system