

Unit IV

Auto correlation

- 1. Find the autocorrelation function of the random process $X(t) = A \sin(\omega t + \theta)$, where A and ω are constants and θ is uniformly distributed in $(0,2\pi)$.
- 2. X(t) and Y(t) are zero mean and stochastically independent random process having auto correlation function $R_{XX}(\tau) = e^{-|\tau|}$ and $R_{YY}(\tau) = cos 2\pi\tau$ respectively.
 - (i) Find the A.C.F of W(t) = X(t) + Y(t)
 - (ii) Find the A.C.F of Z(t) = X(t) Y(t)
 - (iii) Find the cross correlation function of W(t) and Z(t).
- 3. State and prove Wiener -Khinchine theorem.

Relationship between $R_{XX}(\tau)$ and $S_{XX}(\omega)$

4. Define spectral density of a stationary random process X(t). Prove that for a real random process X(t), the power spectral density is an even function.

5. Find the power spectral density of the random process whose auto correlation function is $R(\tau) =$

- 6. Find the power spectral density function whose auto correlation is given by $R_{XX}(\tau) = \frac{A^2}{2}\cos(\omega_0\tau)$.
- 7. A random process {X(t)} is given by X(t) = Acospt + Bsinpt, where A and B are independent random variables such that E(A) = E(B) =0 and $E(A^2) = E(B^2) = \sigma^2$. Find the power spectral density of the process.
- 8. The auto correlation function of a random process is given by $R(\tau) = \begin{cases} \lambda^2 & |\tau| > \varepsilon \\ \lambda^2 + \frac{\lambda}{\varepsilon} \left(1 - \frac{|\tau|}{\varepsilon}\right) & |\tau| \le \varepsilon \end{cases}$ Find the power spectral density of the process.
- 9. The auto correlation function of a WSS process with autocorrelation function $R(\tau) = \alpha^2 e^{-2\lambda \sqrt{|\tau|}}$, determine the power spectral density of the process.
- 10. Determine the power spectral density of a WSS process X(t) which has an auto correlation $R_{XX}(\tau) =$

- 11. The power spectral density function of a zero mean WSS process {X(t)} is given by $S(\omega) = \begin{cases} 1 & |\omega| < \omega_0 \\ 0 & otherwise \end{cases}$. Find $R(\tau)$. Show that X(t) and $X(t + \frac{\pi}{\omega_0})$ are uncorrelated.
- 12. Find the auto correlation function of the process $S_{XX}(\omega) = \begin{cases} 1 + \omega^2 & |\omega| < 1 \\ 0 & otherwise \end{cases}$
- 13. Find the cross correlation {X(t)} and {Y(t)} whose cross power spectrum is $S_{XY}(\omega) = \begin{cases} p + \frac{iq\omega}{B}; -B < \omega < B \\ 0 & otherwise \end{cases}$
- 14. Find the cross correlation {X(t)} and {Y(t)} whose cross power spectrum is $S_{XY}(\omega) = \begin{cases} a + jb\omega; |\omega| < 1 \\ 0 & otherwise \end{cases}$.

15. If the cross correlation of two processes {X(t)} and {Y(t)} is $R_{XY}(t, t + \tau) = \frac{AB}{2} [sin\omega_0 \tau + cos\omega_0 (2t + \tau)]$ where A,B, ω_0 are constants. Find the cross power spectrum.

Unit V

- 1. Prove that, if the input to a time invariant, stable linear system is a WSS process, then the output will also be a WSS process.
- 2. Prove that (i) $R_{XY}((\tau) = R_{XX}(\tau) * h(\tau)$ (ii) $R_{YY}((\tau) = R_{XY}(\tau) * h(-\tau)$ (iii) $S_{XY}(\omega) = S_{XX}(\omega)H(\omega)$ (iv) $S_{YY}(\omega) = S_{XY}(\omega)H^*(\omega)$ (v) $S_{YY}(\omega) = S_{XX}(\omega)|H(\omega)|^2$
- 3. X(t) is the input voltage to a circuit and Y(t) is the output voltage. {X(t)} is a stationary Random process with $\mu_X = 0$ and $R_{XX}(\tau) = e^{-\alpha |\tau|}$. Find μ_Y , $S_{YY}(\omega)$ and $R_{YY}(\tau)$, if the power transfer function is $H(\omega) = \frac{R}{R+iL\omega}$.
- 4. An LTI system has an impulse response $h(t) = e^{-\beta t}u(t)$. Find the output autocorrelation function $R_{YY}(\tau)$ corresponding to an input X(t).
- 5. Assume a random process X(t) is given as input to a system with transfer function $H(\omega) = 1$ for $-\omega_0 < \omega < \omega_0$. If the autocorrelation function of the input

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS 23MAT203-PROBABILITY AND RANDOM PROCESSES

process $\frac{N_0}{2} \delta(r)$. Point out the autocorrelation function of the output process.

- 6. Let X(t) be a stationary process with mean 0 and autocorrelation function $e^{-2|c|}$. If X(t) is the input to a linear system and Y(t) is the output process ,Calculate (i) E[Y(t)] (ii) S_{YY}(ω) and (iii) R_{YY}(|*r*|), if the system function $H(\omega) = \frac{1}{\omega+2i}$.
- 7. A wide sense stationary random process {X(t)} with autocorrelation $R_{XX}(\tau) = Ae^{-a|\tau|}$, where A and a are real positive constants, is applied to the input of a linear transmission input system with impulse response $h(t) = e^{-bt} u(t)$ Where b is a real positive constant. Give the power spectral density of the output Y(t) of the system.
- 8. A linear system is described by the impulse response $h(t) = \frac{1}{RC}e^{-\frac{t}{RC}}u(t)$. Assume an input process whose autocorrelation function is $B\delta(\tau)$.Point out the mean and autocorrelation function of the output function.
- 9. If $\{N(t)\}$ is a band limited white noise centered at a carrier frequency ω_0 such that

$$S_{NN}(\omega) = \begin{cases} \frac{N_0}{2}, & |\omega - \omega_0| < \omega_B \\ 0, & elsewhere \end{cases}$$

Identify the auto correlation function of N(t).

10. Let X(t) be the input voltage to a circuit system and Y(t) be the output voltage. If X(t) is a stationary random process with mean 0 and autocorrelation function $R_{XX}(\tau) = Ae^{-\alpha |\tau|}$. Identify (i) E[Y(t)] (ii) S_{XX}(ω) and

The spectral density of Y(t) if the power transfer function $H(\omega) = \frac{R}{R + iL\omega}$

- 11. A random process X(t) is the input to a linear system whose impulse function is $h(t) = 2e^{-t}, t \ge 0$. The auto correlation function of the process is $R_{XX}(\tau) = e^{-2|\tau|}$. Find the power spectral density of the output process Y(t).
- 12. Find the power spectral density of a random telegraph signal.
- 13. If X(t) is the input voltage to a circuit and Y(t) is the

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore – 641 035 DEPARTMENT OF MATHEMATICS 23MAT203-PROBABILITY AND RANDOM PROCESSES

output voltage. {X(t)} is a stationary random process with $\mu_x = 0$ and $R_{XX}(\tau) = e^{-2|\tau|}$. Find the mean μ_y and power spectrum $S_{yy}(\omega)$ of the output if the system transfer function is given by $H(\omega) = \frac{1}{\omega+2i}$.

- 14. If X(t) is the input and Y(t) is the output of the system. The autocorrelation of X(t) is $R_{XX}(\tau) = 3.\delta(\tau)$. Find the power spectral density, autocorrelation function and mean square value of the output Y(t) with $H(\omega) = \frac{1}{6+j\omega}$
- 15. Analyse the mean of the output of a linear system is given by $\mu_Y = H(0)\mu_X$, where X(t) is a WSS.