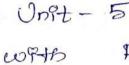


Lapeage

Systems



Random Inputs

* L'Aseas time Privariant Bystem * System transfer Function L9near System with random apputs * Auto correlation and cross correlation × Functions of input and output

· • ·

LIPpeaul time invoulant system: System:

A system is defined by a functional relationship between the input re(t) and the output y(t) as.

 $\Psi(t) = f\{x(t)\}, -\infty < t < \infty$

Linear System:

A System with Functional Helationship F[x(t)] is innear, if for any two popules $\chi_1(t)$ and $\chi_2(t)$, the output of the system can be defined as $F_2(a, \chi, (t) + a_{\chi}, \chi_2(t))$ $= a_1 + [\chi_1(t)]_2 + a_2 + [\chi_2(t)]_2$

Teme invouunt system:

Let Y(t) = F(x(t)].

IF Y(t+h) = F[x(t+h)], then F is called a lene invariant system of xft) and Y(t).

Causal System: Suppose that the value of the output Y(t)at $t = t_0$ depends only on the passe values of the input x(t) at $t = t_0$.

and the second second

$$u_{\cdot}, Y(t_0) = f \left\{ x(t) : t \leq t_0 \right\}$$

Stable: A system is stable RF For every bounded input, the system given bounded output. Note:

* Y(t) = h(t) * X(t) where h(t) is weighting function (07) Propulse response function and X(t) is Input.

*
$$Y(t) = \int b(u) x(t-u) du$$

 $\int cogn$
 $y(t) = \int b(t-u) x(u) du$
 $-\infty$

* HIW) = F[h(T)] ~ System transfer function

* Unit ampulse response

$$\delta(t-\alpha) = \begin{cases} \frac{1}{2}, & \alpha - \frac{e}{2} \leq t \leq \alpha + \frac{e}{2} \\ 0, & \text{otherwace} \end{cases}$$
where $\epsilon \rightarrow 0$.

Properties of the easi System:
Property 1:
IF the Proput
$$x(t)$$
 and its output $Y(t)$
are related by $Y(t) = \int_{-\infty}^{\infty} b_{tal} x(t-u) du$, then
the System 95 a threat time - Provolutiont System.
Broof:
1), To prove $Y(t)$ is threat.
Let $x(t) = a_1 x_1(t) + a_2 x_2(t)$
Then $Y(t) = \int_{-\infty}^{\infty} b_{tal} x(t-u) du$
 $= \int_{-\infty}^{\infty} b_{tal} x(t-u) du + \int_{-\infty}^{\infty} b_{tal} a_2 x_2(t-u) du$
 $= \int_{-\infty}^{\infty} b_{tal} x_1(t-u) du + \int_{-\infty}^{\infty} b_{tal} x_2(t-u) du$
 $= a_1 \int_{-\infty}^{\infty} b_{tal} x_1(t-u) du + a_2 \int_{-\infty}^{\infty} b_{tal} x_2(t-u) du$
 $Y(t) = a_1 y_1(t) + a_2 y_2(t)$
 $\therefore Y(t) 95 a index index$

Y(t) = Y(t+h)· Ytt) is time invariant. Henre the system is linear time invariant System Property 9. Mesults. a). $R_{xy}(\tau) = R_{xy}(\tau) * h(\tau)$ b). Ryy(T) = R xy(T) + b(-T) c). $S_{xy}(\omega) = S_{xx}(\omega) * H(\omega)$ d). $Syy(\omega) = S_{XX}(\omega) |H(\omega)|^2$ Proof: Gaven yet = 5 b(u) x (t-u) du $R_{xy}(\tau) = E[x(t) y(t+\tau)]$ α). $= E \left[\chi(t) \int b(u) \chi \left[t + \tau - u \right] du \right]$ $= \int_{-\infty}^{\infty} h(u) E[x(t) x(t+\tau-u)] du$ = $\int_{XX}^{\infty} b(u) R_{XX} (\tau+u) du$ $\{ : x(t) B wss \}$ $R_{XY}(\tau) = h(\tau) + R_{XX}(\tau)$ (By convolution)

5

C). WKT $R_{xy}(\tau) = R_{xy}(\tau) * h(\tau)$ by (a) Taking Fourier Transform on bothsides, $F[R_{xy}(\tau)] = F[R_{xx}(\tau) * h(\tau)]$ $= F[R_{xx}(\tau)] * F[h(\tau)]$ $S_{XY}(w) = S_{XX}(w) + H(w)$ where H(w) = F(h)d). WHT $R_{yy}(\tau) = R_{xy}(\tau) * b(-\tau)$ by (b) Taking FT on both grd es, $F[R_{yy}(\tau)] = F[R_{xy}(\tau) + b(-\tau)]$ $= F[R_{xy}(\tau)] * F[h(-\tau)]$ $S_{yy}(\omega) = S_{xy}(\omega) * H^*(\omega)$ [: $H(\omega) = F[h(\tau)]$ $= S_{XX}(\omega) * H(\omega) * H^{*}(\omega) = F[h(-\tau)]$ \Rightarrow $Syy(\omega) = S_{XX}(\omega) * |H(\omega)|^{2}$ Hence proved.

Croben and and the state of the of the state

property 3:

IF the Proput to a time Provoulant, Stable linear system is a was process, then the output will also be a was process.

(091) TO Show that 97 the Provet Exity is a cuss priocess, then the output Exity is a wss priocess.

7

Proof :

1). WKT, the Popul and the output are related

 $y(t) = \int_{-\infty}^{\infty} b(u) x(t-u) du \rightarrow (i)$ i). $E[y(t)] = E[\int_{-\infty}^{\infty} b(u) x(t-u) du]$ $= \int_{-\infty}^{\infty} b(u) E[x(t-u)] du \qquad x(t) is wss$ $\Rightarrow E[x(t)] = constand$ in x E[x(t-u)] = constand

= a finite constant, [: Independent of t System is stable] = a constant

- ii). $R_{yy}(t, t+\tau) = E[y(t) y(t+\tau)]$ = $E[\int_{-\infty}^{\infty} b(u_{1}) x(t-u_{1})du, \int_{-\infty}^{\infty} b(u_{2}) x(t+\tau-u_{2})du_{2}]$
 - $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} b(u_{1}) h(u_{2}) E[x(t-u_{1}) x(t+\tau-u_{2})] du_{1} du_{2} du_{3} du_{2} du_{4} d$

Sence, FX(+)} is a was process $\Rightarrow E[x(t-u)) x(t+t-u)]$ is a function of T, Say g(T)

= (1)

(1)
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u_{1}) h(u_{2}) g(\tau) du_{1} du_{2}$$
$$= g(\tau) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(u_{1}) h(u_{2}) du_{1} du_{2}$$
$$= a \quad \text{function of } \tau$$
$$(u_{1}, R_{yy}(t, t+\tau) = R_{yy}(\tau)$$
$$\mapsto f(y(t)) \text{ is a coss Process}$$

9