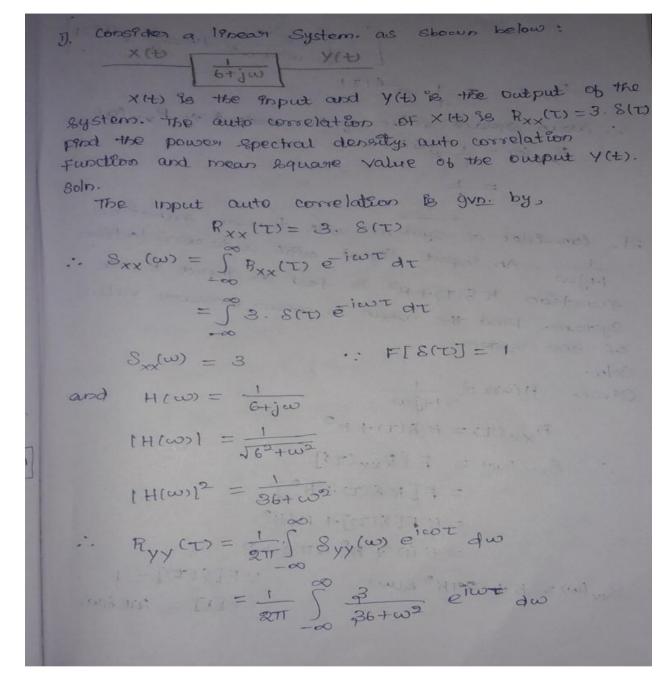


Linear Systems with landom inputs * input -output solationship in the time domain J. It both is the empulse response of the linear System & 4(t) & the output lesponse of the System for the Poput x(t), then the output correlation function is given by, Ryy(T) = b(-T) * b(T) * PXX(T) The cross correlation function between the Poput XIt) and the output Y(t) is given by, Rxy(T) = b(t) * Rxx(T) * Input-output lelationship en the bequency domain I It b(t) % the wish ampulse response of the lanear System & 41th 18 me response of the System for the input x(t) , then Su(F) = | H(F)(Sx(F)

2). The Choss power density spectrum between the Proport and output processes of a linear system is given by $S_{XY}(f) = H(f) \cdot S_X(f)$ $S_{XY}(f) = H(f) \cdot S_X(f)$ where $S_{XY}(f) = H(f) \cdot S_X(f)$ where $S_{XY}(f) = H(f) \cdot S_X(f)$ where $S_{XY}(f) = H(f) \cdot S_X(f)$ is given by $S_{XY}(f) = H(f) \cdot S_X(f)$

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) **Coimbatore - 641 035** DEPARTMENT OF MATHEMATICS

LINEAR SYSTEMS WITH RANDOM INPUTS



$$= \frac{3}{2\pi} \left[\frac{\pi}{6} e^{6i\pi i} \right]$$

$$= \frac{3}{2\pi} \left[\frac{\pi}{6} e^{6i\pi i} \right]$$

$$= \frac{1}{4} e^{-6i\pi i}$$

$$\therefore \text{ Mean square value of the output} \rightarrow R_{yy}(0)$$

$$\therefore R_{yy}(0) = \frac{1}{4} e^{-6(0)}$$

$$= \frac{1}{4} e^{-6(0)}$$

$$= \frac{1}{4} e^{-6(0)}$$

J. Assume a mandom Process XII) is given as apput to a system with toansfer function
$$H(f)=1$$
, $-W < f < W$

Find the output correlation function and power of output process. Assume the outpicorrelation ob input process as $\frac{n}{2}$ $S(T)$.

Solon.

Circle transform of $R_{XX}(T)$,

 $S_X(T) = \frac{n}{2}$ $S(T)$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $F[S(T)]=1$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$
 $S_X(T) = \frac{n}{2}$. $-\infty < f < \infty$

Power of
$$Y(t) = \int_{0}^{W} S_{y}(t) dt$$

$$= \int_{0}^{W} \int_{0}^{\infty} dt$$

Power of $Y(t) = \int_{0}^{W} \int_{0}^{\infty} e^{i \pi t} dt$

$$= \int_{0}^{\infty} \int_{0}^{\infty} (\cos \pi t + i \sin \pi t) dt$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} (\cos \pi t + i \sin \pi t) dt$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \sin t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t dt + i (0)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \cos \pi t$$