
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23CAT607- CROSS-PLATFORM APP DEVELOPMENT

I YEAR II SEM

UNIT 2 – FLUTTER BASICS

DEPARTMENT OF COMPUTER APPLICATIONS

TOPIC 7 – Scaffold, Material App, AppBar, Rich text widgets

Scaffold class

Scaffold is a class in flutter which provides many widgets or we can say APIs like Drawer, Snack-Bar, Bottom-

Navigation-Bar, Floating-Action-Button, App-Bar, etc. Scaffold will expand or occupy the whole device screen. It

will occupy the available space. Scaffold will provide a framework to implement the basic material design layout

of the application.

class Hierarchy Properties of Scaffold Class

app-Bar: It displays a horizontal bar which mainly placed at

the top of the Scaffold. appBar uses the widget AppBar

which has its own properties like elevation, title, brightness,

etc.

body: It will display the main or primary content in the

Scaffold. It is below the appBar and under the

floatingActionButton. The widgets inside the body are at the

left-corner by default.

floatingActionButton: FloatingActionButton is a button that is placed at the right bottom

corner by default. FloatingActionButton is an icon button that floats over the content of the

screen at a fixed place. If we scroll the page its position won’t change, it will be fixed.

drawer: drawer is a slider menu or a panel which is displayed at the side of the Scaffold. The

user has to swipe left to right or right to left according to the action defined to access the

drawer menu. In the Appbar, an appropriate icon for the drawer is set automatically at a

particular position. The gesture to open the drawer is also set automatically. It is handled by

the Scaffold.

bottomNavigationBar: bottomNavigationBar is like a menu at the bottom of the Scaffold.

We have seen this navigationbar in most of the applications. We can add multiple icons or

texts or both in the bar as items.

MaterialApp class

MaterialApp Class: MaterialApp is a predefined class or widget in a flutter.

It is likely the main or core component of a flutter app. The MaterialApp widget provides a wrapper around

other Material Widgets. We can access all the other components and widgets provided by Flutter SDK.

Textwidget, DropdownButton widget, AppBar widget, Scaffold widget, ListView widget, StatelessWidget, State

fulWidget, IconButton widget, TextField widget, Padding widget, ThemeData widget, etc. are the widgets that

can be accessed using MaterialApp class.

There are many more widgets that are accessed using MaterialApp class. Using this widget, we can make an

attractive app that follows the Material Design guidelines.

https://www.geeksforgeeks.org/flutter-dropdownbutton-widget/
https://www.geeksforgeeks.org/flutter-appbar-widget/
https://www.geeksforgeeks.org/scaffold-class-in-flutter-with-examples/
https://www.geeksforgeeks.org/listview-class-in-flutter/
https://www.geeksforgeeks.org/flutter-stateful-vs-stateless-widgets/
https://www.geeksforgeeks.org/difference-between-stateless-and-stateful-widget-in-flutter/
https://www.geeksforgeeks.org/flutter-iconbutton-widget/

import 'package:flutter/material.dart';

void main() {

runApp(const GFGapp());

}

class GFGapp extends StatelessWidget {

const GFGapp({Key? key}) : super(key: key);

@override

Widget build(BuildContext context) {

return MaterialApp(

title: 'GeeksforGeeks',

theme: ThemeData(primarySwatch: Colors.green),

darkTheme: ThemeData(primarySwatch: Colors.grey),

color: Colors.amberAccent,

supportedLocales: {const Locale('en', ' ')},

debugShowCheckedModeBanner: false,

home: Scaffold(

appBar: AppBar(title: const Text('GeeksforGeeks')),

),

);

}

}

Drawer widget is used to provide access to different destinations and functionalities provided

in your application.

Drawer Widget

Syntax:

Properties:

child: The widgets below this widget in the tree.

hashCode: The hash code for this object.

key: Controls how one widget replaces another widget in the tree.

runtimeType: A representation of the runtime type of the object.

elevation: The z-coordinate at which to place this drawer relative to its parent.

semanticLabel: The semantic label of the dialogue used by accessibility frameworks to

announce screen transitions when the drawer is opened and closed.

AppBar Widget

AppBar is usually the topmost component of the app (or sometimes the bottom-most), it

contains the toolbar and some other common action buttons.

Constructor of AppBar class:
Key Properties of Appbar Widget:

actions: This property takes in a list of widgets as a parameter to be

displayed after the title if the AppBar is a row.

title: This property usually takes in the main widget as a parameter to be

displayed in the AppBar.

backgroundColor: This property is used to add colors to the background

of the Appbar.

elevation: This property is used to set the z-coordinate at which to place

this app bar relative to its parent.

shape: This property is used to give shape to the Appbar and manage its

shadow.

import 'package:flutter/material.dart';

void main() {

runApp(gfgApp()); //MaterialApp

}

MaterialApp gfgApp() {

return MaterialApp(

home: Scaffold(

appBar: AppBar(

title: const Text('GeeksforGeeks'),

), //AppBar

body: const Center(

child: Text(

'GeeksforGeeks',

style: TextStyle(fontSize: 24),

), //Text

), // center

), //Scaffold

debugShowCheckedModeBanner: false, //Removing

Debug Banner

);

}

RichText Widget

The RichText widget is used to display text that uses various different styles. The displayed text is

described using a tree of TextSpan objects, each of which has its own associated style that is used for

that subtree.

Syntax:

Properties:

children: The widgets below this widget in the tree.

hashCode: The hash code for this object.

key: Controls how one widget replaces another widget in the tree.

runtimeType: A representation of the runtime type of the object.

text: The text to display in this widget.

textAlign: How the text should be aligned horizontally.

local: This property takes in Locale class as the object. It controls the font used for the text depending on the

language used.

maxLines: The maxLines property takes in an int value as the object. It controls the maximum number of lines

that can be there for the text to expand and wrap.

