
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23CAT607- CROSS-PLATFORM APP DEVELOPMENT

I YEAR II SEM

UNIT 3 – INTRODUCTION TO LAYOUTS

DEPARTMENT OF COMPUTER APPLICATIONS

TOPIC 2 – Single Child Widgets, Multiple Child Widgets

2

SINGLE-CHILD WIDGETS FOR RESPONSIVE LAYOUT

A single-child layout widget allows us to change the position or the size of its child. For

instance, we can use Center to change the position of a widget to be centered in its parent.

Scaffold(

appBar: AppBar(

title: const Text('Without Center'),

),

body: const FlutterLogo(size: 200.0),

),

Scaffold(

appBar: AppBar(

title: const Text('With Center'),

),

body: const Center(

child: FlutterLogo(size: 200.0),

),

),

Two Scaffold widgets

with and without a

Center Child

3

In the code above, there are two versions of a Scaffold containing just the Flutter logo. In the first

version, the logo is placed in the default position. In the second version on line 12, the logo is

wrapped in a Center widget, a single-child layout widget, which changes the position of the logo to

be centered in the Scaffold. The result is shown in the images below.

In the first version of the Scaffold on the left side, the logo is placed in the default position—top

left. In the second version on the right side, the logo is wrapped in the Center widget.

4

LAYOUT WIDGETS FOR RESPONSIVE DESIGN

Flutter application without knowing we could exploit them to make our application responsive.

The single-child widgets we’ll see in this chapter are as follows:

• Align

• AspectRatio

• ConstrainedBox

• Expanded

• Flexible

5

MULTI-CHILD WIDGETS FOR RESPONSIVE LAYOUT

It’s very common for application layouts to combine different UI components.

Think of lists, grids, and custom widgets displayed in a column or row. The

Flutter widgets that replicate these layouts must handle multiple children widgets

simultaneously. Some of them can be exploited to work well on both small and

large screens.

6

The multi-child widgets we’ll see in this chapter are as follows:

1. Column

2. Row

3. ListView

4. GridView

5. Stack

6. Table

7. Wrap

7

SINGLE CHILD SCROLL VIEW CLASS

This widget is useful when you have a single box that will normally be entirely visible, for example a

clock face in a time picker, but you need to make sure it can be scrolled if the container gets too small

in one axis (the scroll direction).

In that case, you might pair the SingleChildScrollView with a ListBody child.

Persisting the scroll position during a session

Scroll views attempt to persist their scroll position using PageStorage. This can be disabled by

setting ScrollController.keepScrollOffset to false on the controller. If it is enabled, using a

PageStorageKey for the key of this widget is recommended to help disambiguate different

scroll views from each other.

https://api.flutter.dev/flutter/widgets/SingleChildScrollView-class.html
https://api.flutter.dev/flutter/widgets/ListBody-class.html

8

• ListView, which handles multiple children in a scrolling list.

• GridView, which handles multiple children in a scrolling grid.

• PageView, for a scrollable that works page by page.

• Scrollable, which handles arbitrary scrolling effects

• Object

• DiagnosticableTree

• Widget

• StatelessWidget

• SingleChildScrollView

Inheritance

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/GridView-class.html
https://api.flutter.dev/flutter/widgets/PageView-class.html
https://api.flutter.dev/flutter/widgets/Scrollable-class.html
https://api.flutter.dev/flutter/dart-core/Object-class.html
https://api.flutter.dev/flutter/foundation/DiagnosticableTree-class.html
https://api.flutter.dev/flutter/widgets/Widget-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html

9

PROPERTIES

child → Widget?

• The widget that scrolls.

• final

clipBehavior → Clip

• The content will be clipped (or not) according to this option.

• final

controller → ScrollController?

• An object that can be used to control the position to which this scroll view is scrolled.

• final

dragStartBehavior → DragStartBehavior

• Determines the way that drag start behavior is handled.

• final

hashCode → int

• The hash code for this object.

• no setterinherited

https://api.flutter.dev/flutter/widgets/SingleChildScrollView/child.html
https://api.flutter.dev/flutter/widgets/Widget-class.html
https://api.flutter.dev/flutter/widgets/SingleChildScrollView/clipBehavior.html
https://api.flutter.dev/flutter/dart-ui/Clip.html
https://api.flutter.dev/flutter/widgets/SingleChildScrollView/controller.html
https://api.flutter.dev/flutter/widgets/ScrollController-class.html
https://api.flutter.dev/flutter/widgets/SingleChildScrollView/dragStartBehavior.html
https://api.flutter.dev/flutter/gestures/DragStartBehavior.html
https://api.flutter.dev/flutter/widgets/Widget/hashCode.html
https://api.flutter.dev/flutter/dart-core/int-class.html

10

key → Key?

• Controls how one widget replaces another widget in the tree.

• finalinherited

keyboardDismissBehavior → ScrollViewKeyboardDismissBehavior

• ScrollViewKeyboardDismissBehavior the defines how this ScrollView will dismiss the keyboard automatically.

• final

padding → EdgeInsetsGeometry?

• The amount of space by which to inset the child.

• final

physics → ScrollPhysics?

• How the scroll view should respond to user input.

• final

primary → bool?

• Whether this is the primary scroll view associated with the parent PrimaryScrollController.

• final

https://api.flutter.dev/flutter/widgets/Widget/key.html
https://api.flutter.dev/flutter/foundation/Key-class.html
https://api.flutter.dev/flutter/widgets/SingleChildScrollView/keyboardDismissBehavior.html
https://api.flutter.dev/flutter/widgets/ScrollViewKeyboardDismissBehavior.html
https://api.flutter.dev/flutter/widgets/ScrollViewKeyboardDismissBehavior.html
https://api.flutter.dev/flutter/widgets/ScrollView-class.html
https://api.flutter.dev/flutter/widgets/SingleChildScrollView/padding.html
https://api.flutter.dev/flutter/painting/EdgeInsetsGeometry-class.html
https://api.flutter.dev/flutter/widgets/SingleChildScrollView/physics.html
https://api.flutter.dev/flutter/widgets/ScrollPhysics-class.html
https://api.flutter.dev/flutter/widgets/SingleChildScrollView/primary.html
https://api.flutter.dev/flutter/dart-core/bool-class.html
https://api.flutter.dev/flutter/widgets/PrimaryScrollController-class.html

11

restorationId → String?

• Restoration ID to save and restore the scroll offset of the scrollable.

• final

reverse → bool

• Whether the scroll view scrolls in the reading direction.

• final

runtimeType → Type

• A representation of the runtime type of the object.

• no setterinherited

scrollDirection → Axis

• The Axis along which the scroll view's offset increases.

• final

https://api.flutter.dev/flutter/widgets/SingleChildScrollView/restorationId.html
https://api.flutter.dev/flutter/dart-core/String-class.html
https://api.flutter.dev/flutter/widgets/SingleChildScrollView/reverse.html
https://api.flutter.dev/flutter/dart-core/bool-class.html
https://api.flutter.dev/flutter/dart-core/Object/runtimeType.html
https://api.flutter.dev/flutter/dart-core/Type-class.html
https://api.flutter.dev/flutter/widgets/SingleChildScrollView/scrollDirection.html
https://api.flutter.dev/flutter/painting/Axis.html
https://api.flutter.dev/flutter/painting/Axis.html

12

METHODS

build(BuildContext context) → Widget

• Describes the part of the user interface represented by this widget.

• override

createElement() → StatelessElement

• Creates a StatelessElement to manage this widget's location in the tree.

• inherited

debugDescribeChildren() → List<DiagnosticsNode>
• Returns a list of DiagnosticsNode objects describing this node's children.

• inherited

debugFillProperties(DiagnosticPropertiesBuilder properties) → void

• Add additional properties associated with the node.

• inherited

noSuchMethod(Invocation invocation) → dynamic

• Invoked when a nonexistent method or property is accessed.

• inherited

https://api.flutter.dev/flutter/widgets/SingleChildScrollView/build.html
https://api.flutter.dev/flutter/widgets/BuildContext-class.html
https://api.flutter.dev/flutter/widgets/Widget-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget/createElement.html
https://api.flutter.dev/flutter/widgets/StatelessElement-class.html
https://api.flutter.dev/flutter/widgets/StatelessElement-class.html
https://api.flutter.dev/flutter/foundation/DiagnosticableTree/debugDescribeChildren.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/foundation/DiagnosticsNode-class.html
https://api.flutter.dev/flutter/widgets/Widget/debugFillProperties.html
https://api.flutter.dev/flutter/foundation/DiagnosticPropertiesBuilder-class.html
https://api.flutter.dev/flutter/dart-core/Object/noSuchMethod.html
https://api.flutter.dev/flutter/dart-core/Invocation-class.html

13

toDiagnosticsNode({String? name, DiagnosticsTreeStyle? style}) → DiagnosticsNode

• Returns a debug representation of the object that is used by debugging tools and
by DiagnosticsNode.toStringDeep.

• inherited

toString({DiagnosticLevel minLevel = DiagnosticLevel.info}) → String

• A string representation of this object.

• inherited
toStringDeep({String prefixLineOne = '', String? prefixOtherLines, DiagnosticLevel minLevel = Diagn
osticLevel.debug}) → String

• Returns a string representation of this node and its descendants.

• inherited

toStringShallow({String joiner = ', ', DiagnosticLevel minLevel = DiagnosticLevel.debug}) → String

• Returns a one-line detailed description of the object.

• inherited

toStringShort() → String

• A short, textual description of this widget.

• inherited

https://api.flutter.dev/flutter/foundation/DiagnosticableTree/toDiagnosticsNode.html
https://api.flutter.dev/flutter/dart-core/String-class.html
https://api.flutter.dev/flutter/foundation/DiagnosticsTreeStyle.html
https://api.flutter.dev/flutter/foundation/DiagnosticsNode-class.html
https://api.flutter.dev/flutter/foundation/DiagnosticsNode/toStringDeep.html
https://api.flutter.dev/flutter/foundation/Diagnosticable/toString.html
https://api.flutter.dev/flutter/foundation/DiagnosticLevel.html
https://api.flutter.dev/flutter/dart-core/String-class.html
https://api.flutter.dev/flutter/foundation/DiagnosticableTree/toStringDeep.html
https://api.flutter.dev/flutter/dart-core/String-class.html
https://api.flutter.dev/flutter/dart-core/String-class.html
https://api.flutter.dev/flutter/foundation/DiagnosticLevel.html
https://api.flutter.dev/flutter/dart-core/String-class.html
https://api.flutter.dev/flutter/foundation/DiagnosticableTree/toStringShallow.html
https://api.flutter.dev/flutter/dart-core/String-class.html
https://api.flutter.dev/flutter/foundation/DiagnosticLevel.html
https://api.flutter.dev/flutter/dart-core/String-class.html
https://api.flutter.dev/flutter/widgets/Widget/toStringShort.html
https://api.flutter.dev/flutter/dart-core/String-class.html

14

OPERATORS

operator ==(Object other) → bool

• The equality operator.

• inherited

https://api.flutter.dev/flutter/widgets/Widget/operator_equals.html
https://api.flutter.dev/flutter/dart-core/Object-class.html
https://api.flutter.dev/flutter/dart-core/bool-class.html

15

Single-Child Widgets

Single-child widgets are those that can only contain one direct child widget. These are often

used to apply some form of transformation or constraint to their single child.

Examples of single-child widgets include Container, Padding, Center, and Align.

import 'package:flutter/material.dart';

void main() {
runApp(MyApp());

}

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {

return MaterialApp(
home: Scaffold(

appBar: AppBar(
title: Text('Single Child Widget Example'),

),

body: Center(
child: Container(

width: 200,
height: 200,
color: Colors.blue,
child: Center(

child: Text(
'Hello, Flutter!',
style: TextStyle(color: Colors.white),

),
),

),
),

),
); } }

In this example,
Container is a single-child widget that

contains a Center widget, which in turn

contains a Text widget.

16

Multi-Child Widgets
Multi-child widgets can contain multiple direct children. These are

typically used for layout purposes and include widgets such as
Column, Row, Stack, and ListView.

import 'package:flutter/material.dart';

void main() {
runApp(MyApp());

}

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {

return MaterialApp(
home: Scaffold(

appBar: AppBar(
title: Text('Multi-Child Widget Example'),

),

body: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[

Container(
width: 100,
height: 100,
color: Colors.red,
child: Center(

child: Text(
'One',
style: TextStyle(color: Colors.white),

),
),

),

17

Container(
width: 100,
height: 100,
color: Colors.green,
child: Center(

child: Text(
'Two',
style: TextStyle(color: Colors.white),

),
),

),

Container(
width: 100,
height: 100,
color: Colors.blue,
child: Center(

child: Text(
'Three',
style: TextStyle(color: Colors.white),

),
),

),
],

),
),

);
}

}In this example, Column

is a multi-child widget that contains three Container
widgets. Each container displays a different text and

has a different background color.

18

KEY DIFFERENCES

Child
Capacity:

Single-child
widgets can

have only one
direct child.

Multi-child
widgets can

have multiple
direct

children.

Use Cases:

Single-child
widgets are
used when
you need to

apply a
constraint,
alignment,
padding, or

other
modification
to a single

widget.

Multi-child
widgets are

used for
layouts that

require
multiple

widgets to be
displayed in a
specific order

or
arrangement.

Examples:

Single-child
widgets:

Container,
Padding,

Center, Align.

Multi-child
widgets:
Column,

Row, Stack,
ListView.

19

