
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23CAT607- CROSS-PLATFORM APP DEVELOPMENT

I YEAR II SEM

UNIT 3 – INTRODUCTION TO LAYOUTS

DEPARTMENT OF COMPUTER APPLICATIONS

TOPIC 3 – Introduction to Gestures, Statement Management in Flutter

2

INTRODUCTION TO GESTURES

 Gestures are generally defined as any physical action / movement of a

user in the intention of activating a specific control of the mobile device.

 Gestures are as simple as tapping the screen of the mobile device to more

complex actions used in gaming applications.

Tap − Touching the surface of the device with fingertip for a short period and
then releasing the fingertip.

Double Tap − Tapping twice in a short time.

Drag − Touching the surface of the device with fingertip and then moving
the fingertip in a steady manner and then finally releasing the fingertip.

3

Flick − Similar to dragging, but doing it in a speeder way.

Pinch − Pinching the surface of the device using two fingers.

Spread/Zoom − Opposite of pinching.

Panning − Touching the surface of the device with fingertip and moving it in
any direction without releasing the fingertip.

Flutter provides an excellent support for all type of gestures through its exclusive widget,

GestureDetector. GestureDetector is a non-visual widget primarily used for detecting the user’s gesture.

To identify a gesture targeted on a widget, the widget can be placed inside GestureDetector widget.

GestureDetector will capture the gesture and dispatch multiple events based on the gesture.

4

• onTapDown

• onTapUp

• onTap

• onTapCancel

Tap

• onDoubleTapDouble tap

• onLongPressLong
press

• onVerticalDragStart

• onVerticalDragUpdate

• onVerticalDragEnd

Vertical
drag

• onHorizontalDragStart

• onHorizontalDragUpdate

• onHorizontalDragEnd

Horizontal
drag

• onPanStart

• onPanUpdate

• onPanEnd
Pan

5

let us modify the hello world application to include gesture detection
feature and try to understand the concept.

Change the body content of
the MyHomePage widget

6

Observe that here we have placed the GestureDetector widget above the Text widget in the
widget hierarchy, captured the onTap event and then finally shown a dialog window.

Implement the *_showDialog* function to
present a dialog when user tabs the hello

world message.

It uses the
generic showDialog and AlertDialog widget to

create a new dialog widget.

7

Flutter also provides a low-level gesture detection mechanism through Listener widget

•PointerDownEvent
•PointerMoveEvent
•PointerUpEvent
•PointerCancelEvent

Flutter also provides a small set of widgets to do specific as well as advanced gestures.

•Dismissible − Supports flick gesture to dismiss the widget.
•Draggable − Supports drag gesture to move the widget.
•LongPressDraggable − Supports drag gesture to move a widget, when its
parent widget is also draggable.
•DragTarget − Accepts any Draggable widget
•IgnorePointer − Hides the widget and its children from the gesture detection
process.
•AbsorbPointer − Stops the gesture detection process itself and so any
overlapping widget also can not able to participate in the gesture detection
process and hence, no event is raised.
•Scrollable − Support scrolling of the content available inside the widget.

8

Flutter - State Management

Managing state in an application is one of the most important and necessary process in the
life cycle of an application.

A state management can be divided into two categories

Ephemeral app state

Last for a few seconds like
the current state of an
animation or a single page
like current rating of a
product. Flutter supports its
through StatefulWidget.

Last for entire application
like logged in user details,
cart information,
etc., Flutter supports its
through scoped_model.

https://www.tutorialspoint.com/flutter/flutter_ephemeral_state_management.htm
https://www.tutorialspoint.com/flutter/flutter_application_state.htm

9

Navigation and Routing

In any application, navigating from one page / screen to another defines the work flow of the
application. The way that the navigation of an application is handled is called Routing. Flutter
provides a basic routing class – MaterialPageRoute and two methods - Navigator.push and
Navigator.pop, to define the work flow of an application

MaterialPageRoute

MaterialPageRoute is a widget used to render its
UI by replacing the entire screen with a platform
specific animation.

10

Navigation.push

Navigation.push is used to navigate to new screen using MaterialPageRoute
widget.

Navigation.pop

Navigation.pop is used to navigate to previous screen.

11

Create a new application to better understand the navigation concept.

• Create a new Flutter application in Android studio, product_nav_app

Copy the assets folder from product_nav_app to product_state_app and add assets
inside the pubspec.yaml file.

12

•Let us create a Product class to organize the product
information.

13

