

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

DEPARTMENT OF MATHEMATICS

de	UNIT-III
	COMPLEX DIFFERENTIATION
	INTRODUCTION:
	If x and y are real numbers then
	Z=x+iy is called a complex number where
	Ix is called real past of Z, y is called the
	imaginary part of z and the value of is J-1.
	The complex number x = ig is called as the complex
	Conjugate of Z & wit is denoted by Z.
	i.e., $\overline{z} = x - iy$.
	Note:
	$ x = \sqrt{x^2 + y^2}$
	2. 12 1 = ZZ
	3. $zz = x^2 + y^2 = x^2$
	$4 - 1\overline{z}I = IzI$
	5. Real past of $Z = \frac{Z + \overline{Z}}{2}$
	6. Imaginary part of $Z = \frac{Z - Z}{2i}$
	7. Z = reid is called polar form of z.
	8. Amplitude of Z = 0 = Lan (4/2)
	FUNCTIONS OF COMPLEX VARIABLE:
	W = f(z) = u(x, y) + iv(x, y) where
	u(x,y) and v(x,y) are real variables.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & D.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPATMENT OF MATHEMATICS
Single Volued function:
If for each value of z in R there will be
only one value of w, then wis called a single
valued function of Z
\mathcal{E}_{z} : $\omega = z^{2}$, $\omega = 1/z$. $\omega \in \mathbb{N}$
2:12-23 2:12-23
w: 1 4 4 -9 \w:1: -42 -1/2 1/3
Multiple - Valued function:
If there is more than one value of w
Corresponding to a given value of z, then wis
Called a multiple - valued function.
ε_{x} : $\omega = z^{1/2}$
Z: 4 . 9 . 1
$\omega : -2, 2, -3, 3, 1, -1$
Analytic function:
A function f(z) is said to be analytic
at a point Z= a in a Region Rif
(i) $f(z)$ is differentiable at $z=a$.
(ii) f(z) is differentiable at all points for some
neighbourhood of Z= a.
(or)
A function is said to be analytic at a
point if its desivative exists not only at that point
but also in some neighbourhood of that point.