SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : OPERATING SYSTEMS
Il YEAR/ IV SEMESTER
UNIT — I1 PROCESS SCHEDULING AND SYNCHRONIZATION

Topic: Process Synchronization-Critical Section Problem

Dr.B.Vinodhini
Associate Professor
Department of Computer Science and Engineering

ST rionts

- o
N

Process Synchronization \n:/

A cooperating process is one that can affect or be affected by other processes executing
In the system.

or be allowed to share
data only through files

or messages.

» Concurrent Access to shared data may result in data consistency

»Various Mechanisms to ensure orderly execution of Cooperating Processes that
share a logical address space

OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

Process Synchronization

One solution to the producer-consumer problem uses shared memory.

To allow producer and consumer processes to run concurrently, we must have available

a buffer of items that can be filled by the producer and emptied by the consumer.

This buffer will reside in a region of memory that is shared by the producer and

consumer processes.

A producer can produce one item while the consumer is consuming another item.

The producer and consumer must be synchronized, so that the consumer does not try

to consume an item that has not yet been produced.

OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

Two kinds of buffers:

Unbounded buffer Bounded buffer

OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

Process Synchronization \n:/

counter variable = 0
counter is incremented every time we add a new item to the buffer counter++

counter is decremented every time we remove one item from the buffer counter--

Suppose that the value of the variable counter is currently 5.

The producer and consumer processes execute the statements "counter++" and
"counter--" concurrently.

Following the execution of these two statements, the value of the variable counter
may be 4, 5, or 6!

The only correct result, though, is counter == 5, which is generated correctly if the
producer and consumer execute separately.

OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

Process Synchronization \n:/

-

rer115%
-y (-
-

recis

~ 4

| execure

| | | execute
| consumer . execute
| consumer | executre
] | execute
consumer execure

OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

—

S

Process Synchronization \n:/

| execute
| execute
| execute
. execute
| execute . counTe =
. execure . counter =

variable counter concurrently.

A situation like this, where several processes access and manipulate the same data
concurrently and the outcome of the execution depends on the particular order in which
the access takes place, is called a race condition.

OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

The Critical-Section Problem

Consider a system consisting of n processes

Each process has a segment of code, called a
critical section

in which the process may be changing common variables, updating a table, writing a file,
and so on.

When one process is executing in its critical section, no other process is to be allowed to
execute in its critical section.

OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

Process Synchronization

Each process must request permission to enter its critical

The section of code implementing this request is the enfry se«

R

The critical section may be followed by an exit section.

T
4]

The remaining code is the remainder section.

“do

} while (TRUE);

Figure: General structure of a typical process.
OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

Process Synchronization

A solution to the critical-section problem must satisfy the following three requirements:
1. Mutual exclusion:

If process P; is executing in its critical section, then no other processes can be executing
in their critical sections.

2. Progress:

If no process is executing in its critical section and some processes wish to enter their
critical sections, then only those processes that are not executing in their remainder
sections can participate in the decision on which will enter its critical section next, and
this selection cannot be postponed indefinitely.

3. Bounded waiting:

There exists a bound, or limit, on the number of times that other processes are allowed to
enter their critical sections after a process has made a request to enter its critical section
and before that request is granted.

LLSTITITIONnlS

Process Synchronization

A solution to the critical-section problem must satisfy the following three requirements:
1. Mutual exclusion:

If process P; is executing in its critical section, then no other processes can be executing
in their critical sections.

2. Progress:

If no process is executing in its critical section and some processes wish to enter their
critical sections, then only those processes that are not executing in their remainder
sections can participate in the decision on which will enter its critical section next, and
this selection cannot be postponed indefinitely.

3. Bounded waiting:

There exists a bound, or limit, on the number of times that other processes are allowed to
enter their critical sections after a process has made a request to enter its critical section
and before that request is granted.

LLSTITITIONnlS

References

Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth
Edition, Wiley India Pvt Ltd, 2009.

. Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition,
Pearson Education, 2010.

OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

> r
CLErITITions

OS/Unit-1l/Process Sychronization /B.Vinodhini, ASP/CSE

