
SNS COLLEGE OF TECHNOLOGY
Coimbatore-35.

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Dr.B.Vinodhini

Associate Professor

Department of Computer Science and Engineering

COURSE NAME : OPERATING SYSTEMS

II YEAR/ IV SEMESTER

UNIT – II PROCESS SCHEDULING AND SYNCHRONIZATION

Topic: Classical Problems of Process Synchronization

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Classical Problems of Synchronization

Bounded Buffer Problem

Readers writers Problem

Dinning Philosophers Problem

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

The Bounded Buffer Problem

The Bounded Buffer Problem(Producer Consumer) Problem) one of the classic

problems of Synchronization

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Solution to the Bounded Buffer Problem

We will make use of three Semaphores

1.m(mutex),a binary semaphore which is used to acquire and release the lock

2.empty,a counting semaphore whose initial value is the number of slots in the buffer ,since initially

all slots are empty

3.full, a counting semaphore whose initial value is 0

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 5

Producer & Consumer

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

Producer

Consumer

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 6

Race Condition

• counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

• counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 7

Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

– Process may be changing common variables, updating table, writing file, etc

– When one process in critical section, no other may be in its critical section

• Critical section problem is to design protocol to solve this

• Each process must ask permission to enter critical section in entry section, may follow

critical section with exit section, then remainder section

• General structure of process Pi

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 8

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes

can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist some processes that

wish to enter their critical section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other processes are

allowed to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n processes

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 9

Algorithm 1 for Process Pi

do {

while (turn == j);

critical section

turn = j;

remainder section

} while (true);

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 10

Algorithm 2 -Peterson’s Solution

• Good algorithmic description of solving the problem

• Two process solution

• Assume that the load and store machine-language instructions are atomic; that is,

cannot be interrupted

• The two processes share two variables:

– int turn;

– Boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical section

• The flag array is used to indicate if a process is ready to enter the critical section. flag[i]

= true implies that process Pi is ready!

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 11

Algorithm 2 -Peterson’s Solution

do {

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

• Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 12

Synchronization Hardware

• Many systems provide hardware support for implementing the critical section code.

• All solutions below based on idea of locking

– Protecting critical regions via locks

• Uniprocessors – could disable interrupts

– Currently running code would execute without preemption

– Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions

• Atomic = non-interruptible

– Either test memory word and set value

– Or swap contents of two memory words

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 13

Solution to Critical-section Problem
Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Test_and_set Instruction

Definition boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 14

Solution using test_and_set()

Shared Boolean variable lock, initialized to FALSE

Solution:

do {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 15

Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()

• Originally called P() and V()

• Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

• Definition of the signal() operation

signal(S) {

S++;

}

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 16

Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0 and 1

– Same as a mutex lock

• Can solve various synchronization problems

• Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

• Can implement a counting semaphore S as a binary semaphore

4/3/2025 SNSCT/CSE/Operating Systems/Unit-II/Dr.B.Vinodhini 17

Semaphore Implementation

• Must guarantee that no two processes can execute the wait() and signal() on the

same semaphore at the same time

• Thus, the implementation becomes the critical section problem where the wait and

signal code are placed in the critical section

– Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical sections and therefore this is

not a good solution

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Semaphores

The main disadvantage of the semaphore – Busy Waiting

While a process is in its critical section, any other process that tries to enter its critical section must

loop continuously in the entry code

Busy waiting wastes CPU cycles that some other process might be to use productively

This type of semaphore is also called a spinlock because the process spins while waiting for the

lock

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Semaphores

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Disadvantages of Semaphores-Dead lock and
Starvation

Deadlock and starvation are conditions in

which the processes requesting a resource have

been delayed for a long time.

Deadlock happens when every process holds

a resource and waits for another process to hold

another resource.

In contrast, in starvation, the processes with

high priorities continuously consume resources,

preventing low priority processes from

acquiring resources.

A hardware solution to the critical
section Problem

There is a shared variable which can
take either of the two values 0 or 1

Before Entering into the critical
section a process inquires about the
lock

If it is locked it keeps on waiting till
it becomes free

If it is not locked it takes the lock and

executes the critical section

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Hardware Based Solution-Test and Set Lock

Atomic Operation

Lock value set to 0-If it is Unlocked

Lock Value set to 1-It is locked

All are happened in Single operation

without any Interrupt

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Hardware Based Solution-Test and Set Lock

Satisfies Mutual Exclusion

Does Not Satisfy Bounded Waiting

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Classical Problems of Synchronization

Bounded Buffer Problem

Readers writers Problem

Dinning Philosophers Problem

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

The Bounded Buffer Problem

The Bounded Buffer Problem(Producer Consumer) Problem) one of the classic

problems of Synchronization

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Solution to the Bounded Buffer Problem

We will make use of three Semaphores

1.m(mutex),a binary semaphore which is used to acquire and release the lock

2.empty,a counting semaphore whose initial value is the number of slots in the buffer ,since initially

all slots are empty

3.full, a counting semaphore whose initial value is 0

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

2.Readers Writers Problem

The readers-writers problem is a classical problem of process synchronization,

It relates to a data set such as a file that is shared between more than one process at a time.

Among these various processes, some are Readers - which can only read the data set; they do not

perform any updates, some are Writers - can both read and write in the data sets.

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Solution to the Readers Writers Problem Using

Semaphores

We will make use of two Semaphores and an Integer Variable

1.Mutex , a semaphore(initialized to 1) which is used to ensure Mutual

exclusion when read count is Updated i.e when any Reader enters or exit

from the critical section

2.wrt ,a semaphore (initialized to 1) common to both reader and writer

processes

3.readcount ,an integer variable(initialized to 0) that keeps track of how

many processes are currently reading the object

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

Solution to the Readers Writers Problem Using

Semaphores

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

3.The Dinning Philosophers Problem

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

3.The Dinning Philosophers Problem

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

3.The Dinning Philosophers Problem

One simple solution to represent each fork/chopstick with a semaphore

A Philosopher tries to grab a fork/chopstick by Executing a wait() operation on that semaphore

He releases his fork /chopsticks by executing the signal() operation on the appropriate semaphores

Thus the shared data are semaphore chopstick[5];

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

3.The Dinning Philosophers Problem

Possible remedies to avoid Deadlock

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

References

1. Silberschatz, Galvin, and Gagne, “Operating System Concepts”, Ninth
Edition, Wiley India Pvt Ltd, 2009.

2 . Andrew S. Tanenbaum, “Modern Operating Systems”, Fourth Edition,
Pearson Education, 2010.

OS/Unit-II/Process Sychronization /B.Vinodhini, ASP/CSE

