
SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Memory Management Paging

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

14/3/2025

SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Paging Basic Method

Hardware Support

Protection

Shared Pages

Structure of Page Table

Paging

Paging

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

3

• Memory management technique

• Divides a process’s virtual memory into equal sized

blocks called pages

• Physical memory into frames

• Allowing for non contiguous allocation and enabling

virtual memory

• Page table used to map logical(virtual)

• Addresses to physical addresses

Page Fault-Page is not currently in

memory

4/3/2025

Paging

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

Physical address space of a process can be noncontiguous

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 page table to translate logical to physical addresses

 Disadvantage

 Still have Internal fragmentation

44/3/2025

Paging

• Permits the Physical

Address space of a

process to be

noncontiguous

• Address Translation

Scheme

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

5

Frame No Valid/Invalid Protectio
n(R/W/X)

Reference Caching Dirty

Page Table Entry

4/3/2025

Address Translation Scheme

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

64/3/2025

Paging Hardware

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

74/3/2025

Paging model of logical and Physical Memory

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

84/3/2025

Paging Example

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

n=2 and m=4 32-byte memory and 4-

byte pages

94/3/2025

Paging-Free frames

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

104/3/2025

Implementation of Page Table

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page

table

• Page-table length register (PTLR) indicates size of

the page table

In this scheme every data/instruction access requires

two memory accesses

– One for the page table and one for the data /

instruction

The two memory access problem can be solved by

associative memory or translation look-aside

buffers (TLBs)
114/3/2025

Associative Memory

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

124/3/2025

Paging Hardware With TLB

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

134/3/2025

Memory Protection

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

Memory protection implemented by associating

protection bit

Valid-invalid bit attached to each entry in the page

table:

 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)

144/3/2025

Paging –Protection
Valid (v) or Invalid (i) Bit In A Page Table

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

154/3/2025

Shared Pages

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

Shared code

– One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)

– Similar to multiple threads sharing the same process space

– Also useful for inter process communication if sharing of

read-write pages is allowed

Private code and data

– Each process keeps a separate copy of the code and data

– The pages for the private code and data can appear anywhere

in the logical address space

164/3/2025

Paging –Shared Pages

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

174/3/2025

Problems

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

184/3/2025

Problems

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

19

Consider a system which has LA = 7 bits, PA = 6 bits, page size = 8

words, then calculate number of pages and number of frames.

Answer: Total bits of LA = 7 bits, which means it is equal to 27

The page size = 8 words which means 23 so we can say it is of 3 bits

Therefore, Page No. = 4 which we can say is 24 and then total number of

pages = 24 = 16

While total number of bits required to respond total number of page = 4 bits.

PA = 6 bits, total size of PA = 26 = 64

Now, we know that frame offset = Page offset

Number of frames = 23 = 8

Total number of entries in page table = number of pages

Total number of entries = 16

Total size of page table = 24 x 8

4/3/2025

Problems-Effective Access time-No

Page fault

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

20

If main memory access time is 400ms, TLB access time is 50ms,considering a

TLB hit as 90%, What will be the overall Effective Access Time(EAT)?

Formula

EAT = (TLB Hit Rate) * (TLB Access Time + Main Memory Access Time)

+ (1 - TLB Hit Rate) * (TLB Access Time + Main Memory Access Time +

Main Memory Access Time)

The overall Effective Access Time (EAT) is calculated as 0.9 * (50 + 400) +

0.1 * (50 + 400 + 400) = 490ms.

1.If main memory access time is 50ms, TLB access time is 10ms,considering a

TLB hit as 90% and there is no page fault, What will be the overall Effective

Access Time(EAT)?

.
4/3/2025

Problems-Effective Access time

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

21

Main memory access time=‘m’

Page Fault Rate=p

Page fault service time=s

Effective memory access time=p*s+(1-p)*m

4/3/2025

SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Structure of the Page Table

22
23CST202 OS-Paging-Dr.B.Vinodhini,

ASP/CSE
4/3/2025

Structure of the Page Table

Hierarchical Paging

Hashed Page Tables

Inverted Page Tables

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

234/3/2025

Hierarchical Page Tables

• Break up the logical address space into

multiple page tables

• A simple technique is a two-level page table

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE
244/3/2025

23CST202 OS-Paging-Dr.B.Vinodhini,

ASP/CSE

25

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided
into:

 a page number consisting of 20 bits.

 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further divided into:

 a 10-bit page number.

 a 10-bit page offset.

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.

page number page offset

pi p2 d

10 10 12

4/3/2025

Two-Level Page-Table Scheme

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 264/3/2025

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

• A logical address (on 32-bit machine with 1K page size) is divided into:

– a page number consisting of 22 bits

– a page offset consisting of 10 bits

• p1 is an index into the outer page table, and p2 is the

displacement within the page of the inner page table

known as forward-mapped page table

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 274/3/2025

Address-Translation Scheme

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 284/3/2025

64-bit Logical Address Space

• Two-level paging scheme not sufficient
• Outer page table has 242 entries or 244 bytes

• Three-level Paging Scheme

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

294/3/2025

Hashed Page Tables

• Virtual page number is hashed into a page table

• Each element contains

(1) the virtual page number

(2) the value of the mapped page frame

(3) a pointer to the next element
• Virtual page numbers are compared in this chain searching for

a match

– If a match is found, the corresponding physical frame is

extracted

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 304/3/2025

Hashed Page Table

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 314/3/2025

Inverted Page Table

• Rather than each process having a page table and
keeping track of all possible logical pages, track all

physical pages

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 324/3/2025

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

334/3/2025

