
SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Memory Management Paging

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

14/3/2025

SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Paging Basic Method

Hardware Support

Protection

Shared Pages

Structure of Page Table

Paging

Paging

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

3

• Memory management technique

• Divides a process’s virtual memory into equal sized

blocks called pages

• Physical memory into frames

• Allowing for non contiguous allocation and enabling

virtual memory

• Page table used to map logical(virtual)

• Addresses to physical addresses

Page Fault-Page is not currently in

memory

4/3/2025

Paging

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

Physical address space of a process can be noncontiguous

 Avoids external fragmentation

 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames

 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 page table to translate logical to physical addresses

 Disadvantage

 Still have Internal fragmentation

44/3/2025

Paging

• Permits the Physical

Address space of a

process to be

noncontiguous

• Address Translation

Scheme

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

5

Frame No Valid/Invalid Protectio
n(R/W/X)

Reference Caching Dirty

Page Table Entry

4/3/2025

Address Translation Scheme

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

64/3/2025

Paging Hardware

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

74/3/2025

Paging model of logical and Physical Memory

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

84/3/2025

Paging Example

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

n=2 and m=4 32-byte memory and 4-

byte pages

94/3/2025

Paging-Free frames

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

104/3/2025

Implementation of Page Table

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page

table

• Page-table length register (PTLR) indicates size of

the page table

In this scheme every data/instruction access requires

two memory accesses

– One for the page table and one for the data /

instruction

The two memory access problem can be solved by

associative memory or translation look-aside

buffers (TLBs)
114/3/2025

Associative Memory

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

124/3/2025

Paging Hardware With TLB

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

134/3/2025

Memory Protection

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

Memory protection implemented by associating

protection bit

Valid-invalid bit attached to each entry in the page

table:

 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)

144/3/2025

Paging –Protection
Valid (v) or Invalid (i) Bit In A Page Table

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

154/3/2025

Shared Pages

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

Shared code

– One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)

– Similar to multiple threads sharing the same process space

– Also useful for inter process communication if sharing of

read-write pages is allowed

Private code and data

– Each process keeps a separate copy of the code and data

– The pages for the private code and data can appear anywhere

in the logical address space

164/3/2025

Paging –Shared Pages

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

174/3/2025

Problems

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

184/3/2025

Problems

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

19

Consider a system which has LA = 7 bits, PA = 6 bits, page size = 8

words, then calculate number of pages and number of frames.

Answer: Total bits of LA = 7 bits, which means it is equal to 27

The page size = 8 words which means 23 so we can say it is of 3 bits

Therefore, Page No. = 4 which we can say is 24 and then total number of

pages = 24 = 16

While total number of bits required to respond total number of page = 4 bits.

PA = 6 bits, total size of PA = 26 = 64

Now, we know that frame offset = Page offset

Number of frames = 23 = 8

Total number of entries in page table = number of pages

Total number of entries = 16

Total size of page table = 24 x 8

4/3/2025

Problems-Effective Access time-No

Page fault

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

20

If main memory access time is 400ms, TLB access time is 50ms,considering a

TLB hit as 90%, What will be the overall Effective Access Time(EAT)?

Formula

EAT = (TLB Hit Rate) * (TLB Access Time + Main Memory Access Time)

+ (1 - TLB Hit Rate) * (TLB Access Time + Main Memory Access Time +

Main Memory Access Time)

The overall Effective Access Time (EAT) is calculated as 0.9 * (50 + 400) +

0.1 * (50 + 400 + 400) = 490ms.

1.If main memory access time is 50ms, TLB access time is 10ms,considering a

TLB hit as 90% and there is no page fault, What will be the overall Effective

Access Time(EAT)?

.
4/3/2025

Problems-Effective Access time

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

21

Main memory access time=‘m’

Page Fault Rate=p

Page fault service time=s

Effective memory access time=p*s+(1-p)*m

4/3/2025

SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Structure of the Page Table

22
23CST202 OS-Paging-Dr.B.Vinodhini,

ASP/CSE
4/3/2025

Structure of the Page Table

Hierarchical Paging

Hashed Page Tables

Inverted Page Tables

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

234/3/2025

Hierarchical Page Tables

• Break up the logical address space into

multiple page tables

• A simple technique is a two-level page table

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE
244/3/2025

23CST202 OS-Paging-Dr.B.Vinodhini,

ASP/CSE

25

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided
into:

 a page number consisting of 20 bits.

 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further divided into:

 a 10-bit page number.

 a 10-bit page offset.

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.

page number page offset

pi p2 d

10 10 12

4/3/2025

Two-Level Page-Table Scheme

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 264/3/2025

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

• A logical address (on 32-bit machine with 1K page size) is divided into:

– a page number consisting of 22 bits

– a page offset consisting of 10 bits

• p1 is an index into the outer page table, and p2 is the

displacement within the page of the inner page table

known as forward-mapped page table

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 274/3/2025

Address-Translation Scheme

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 284/3/2025

64-bit Logical Address Space

• Two-level paging scheme not sufficient
• Outer page table has 242 entries or 244 bytes

• Three-level Paging Scheme

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

294/3/2025

Hashed Page Tables

• Virtual page number is hashed into a page table

• Each element contains

(1) the virtual page number

(2) the value of the mapped page frame

(3) a pointer to the next element
• Virtual page numbers are compared in this chain searching for

a match

– If a match is found, the corresponding physical frame is

extracted

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 304/3/2025

Hashed Page Table

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 314/3/2025

Inverted Page Table

• Rather than each process having a page table and
keeping track of all possible logical pages, track all

physical pages

23CST202 OS-Paging-Dr.B.Vinodhini, ASP/CSE 324/3/2025

23CST202 OS-Paging-Dr.B.Vinodhini,
ASP/CSE

334/3/2025

