
SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Process Creation & Page

Replacement

Process Creation

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

• Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in memory

– If either process modifies a shared page, only then is the

page copied

• Free pages are allocated from a pool of zero-fill-on-demand

pages

– Pool should always have free frames for fast demand page

execution

– Why zero-out a page before allocating it?

• vfork() variation on fork()

Before Process 1 Modifies Page C

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

After Process 1 Modifies Page C

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

What Happens if There is no Free Frame

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Used up by process pages

 Also in demand from the kernel, I/O buffers, etc

 How much to allocate to each?

 Page replacement – find some page in memory, but not really

in use, page it out

 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in

minimum number of page faults

 Same page may be brought into memory several times

Page Replacement

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

• Prevent over-allocation of memory by modifying

page-fault service routine to include page

replacement

• Use modify (dirty) bit to reduce overhead of page

transfers – only modified pages are written to disk

• Page replacement completes separation between

logical memory and physical memory – large virtual

memory can be provided on a smaller physical

memory

Need For Page Replacement

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

Basic Page Replacement

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

1. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement

algorithm to select a victim frame

- Write victim frame to disk if dirty

2. Bring the desired page into the (newly) free frame;

update the page and frame tables

3. Continue the process by restarting the instruction that

caused the trap

Note now potentially 2 page transfers for page fault

– increasing EAT

Page Replacement

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

Page and Frame Replacement Algorithms

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

• Frame-allocation algorithm determines

– How many frames to give each process

– Which frames to replace

• Page-replacement algorithm

– Want lowest page-fault rate on both first access and re-access

• Reference string and computing the number of page faults on that

string

– String is just page numbers, not full addresses

– Repeated access to the same page does not cause a page fault

– Results depend on number of frames available

• In all our examples, the reference string of referenced page numbers

is 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Graph of Page Faults Versus The

Number of Frames

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

First-In-First-Out (FIFO) Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time per process)

15 page faults

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

 Adding more frames can cause more page faults!

 Belady’s Anomaly

Optimal Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Replace page that will not be used for longest period of time

 9 is optimal for the example

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

Least Recently Used (LRU) Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of

time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

LRU Algorithm (Cont.)

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Counter implementation

 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the

counter

 When a page needs to be changed, look at the counters to

find smallest value

Search through table needed

 LRU and OPT are cases of stack algorithms that don’t have

Belady’s Anomaly

Use Of A Stack to Record Most Recent Page

References

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

LRU Approximation Algorithms

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 LRU needs special hardware and still slow

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace any with reference bit = 0 (if one exists)

 We do not know the order, however

 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit

 Clock replacement

 If page to be replaced has

 Reference bit = 0 -> replace it

 reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

Second-Chance (clock) Page-

Replacement Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

Enhanced Second-Chance Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Improve algorithm by using reference bit and modify bit (if available) in

concert

 Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified – best page to replace

2. (0, 1) not recently used but modified – not quite as good, must write out

before replacement

3. (1, 0) recently used but clean – probably will be used again soon

4. (1, 1) recently used and modified – probably will be used again soon and

need to write out before replacement

 When page replacement called for, use the clock scheme but use the four

classes replace page in lowest non-empty class

 Might need to search circular queue several times

Counting Algorithms

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Keep a counter of the number of references that have been made to each

page

 Not common

 Least Frequently Used (LFU) Algorithm: replaces page with smallest

count

 Most Frequently Used (MFU) Algorithm: based on the argument that the

page with the smallest count was probably just brought in and has yet to be

used

Summarization

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

