
SNS COLLEGE OF TECHNOLOGY
(Autonomous)

COIMBATORE-35

Process Creation & Page

Replacement

Process Creation

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

• Copy-on-Write (COW) allows both parent and child

processes to initially share the same pages in memory

– If either process modifies a shared page, only then is the

page copied

• Free pages are allocated from a pool of zero-fill-on-demand

pages

– Pool should always have free frames for fast demand page

execution

– Why zero-out a page before allocating it?

• vfork() variation on fork()

Before Process 1 Modifies Page C

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

After Process 1 Modifies Page C

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

What Happens if There is no Free Frame

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Used up by process pages

 Also in demand from the kernel, I/O buffers, etc

 How much to allocate to each?

 Page replacement – find some page in memory, but not really

in use, page it out

 Algorithm – terminate? swap out? replace the page?

 Performance – want an algorithm which will result in

minimum number of page faults

 Same page may be brought into memory several times

Page Replacement

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

• Prevent over-allocation of memory by modifying

page-fault service routine to include page

replacement

• Use modify (dirty) bit to reduce overhead of page

transfers – only modified pages are written to disk

• Page replacement completes separation between

logical memory and physical memory – large virtual

memory can be provided on a smaller physical

memory

Need For Page Replacement

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

Basic Page Replacement

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

1. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement

algorithm to select a victim frame

- Write victim frame to disk if dirty

2. Bring the desired page into the (newly) free frame;

update the page and frame tables

3. Continue the process by restarting the instruction that

caused the trap

Note now potentially 2 page transfers for page fault

– increasing EAT

Page Replacement

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

Page and Frame Replacement Algorithms

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

• Frame-allocation algorithm determines

– How many frames to give each process

– Which frames to replace

• Page-replacement algorithm

– Want lowest page-fault rate on both first access and re-access

• Reference string and computing the number of page faults on that

string

– String is just page numbers, not full addresses

– Repeated access to the same page does not cause a page fault

– Results depend on number of frames available

• In all our examples, the reference string of referenced page numbers

is 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Graph of Page Faults Versus The

Number of Frames

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

First-In-First-Out (FIFO) Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time per process)

15 page faults

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

 Adding more frames can cause more page faults!

 Belady’s Anomaly

Optimal Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Replace page that will not be used for longest period of time

 9 is optimal for the example

 How do you know this?

 Can’t read the future

 Used for measuring how well your algorithm performs

Least Recently Used (LRU) Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of

time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

LRU Algorithm (Cont.)

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Counter implementation

 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the

counter

 When a page needs to be changed, look at the counters to

find smallest value

Search through table needed

 LRU and OPT are cases of stack algorithms that don’t have

Belady’s Anomaly

Use Of A Stack to Record Most Recent Page

References

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

LRU Approximation Algorithms

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 LRU needs special hardware and still slow

 Reference bit

 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace any with reference bit = 0 (if one exists)

 We do not know the order, however

 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit

 Clock replacement

 If page to be replaced has

 Reference bit = 0 -> replace it

 reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

Second-Chance (clock) Page-

Replacement Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

Enhanced Second-Chance Algorithm

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Improve algorithm by using reference bit and modify bit (if available) in

concert

 Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified – best page to replace

2. (0, 1) not recently used but modified – not quite as good, must write out

before replacement

3. (1, 0) recently used but clean – probably will be used again soon

4. (1, 1) recently used and modified – probably will be used again soon and

need to write out before replacement

 When page replacement called for, use the clock scheme but use the four

classes replace page in lowest non-empty class

 Might need to search circular queue several times

Counting Algorithms

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

 Keep a counter of the number of references that have been made to each

page

 Not common

 Least Frequently Used (LFU) Algorithm: replaces page with smallest

count

 Most Frequently Used (MFU) Algorithm: based on the argument that the

page with the smallest count was probably just brought in and has yet to be

used

Summarization

16IT204/OS/Process Creation Page
replacement

/Dr.M.Kavitha,AP/CSE,Dr.B.Vinodhini
,AP/CSE&Mr.M.Karthick,AP/CSE

